blk_box_bc/Core/Src/main.c

804 lines
23 KiB
C

/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* Copyright (c) 2024 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "RFID.h"
#include <stdio.h>
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
ADC_HandleTypeDef hadc1;
DMA_HandleTypeDef hdma_adc1;
I2C_HandleTypeDef hi2c1;
SPI_HandleTypeDef hspi1;
UART_HandleTypeDef huart2;
/* USER CODE BEGIN PV */
/* Bitwise changed buffer */
uint8_t old_delta;
volatile uint8_t delta;
#define DELTA_KP_BIT 0
#define DELTA_BTN_BIT 1
#define DELTA_TOUCH_BIT 2
#define DELTA_CARD_PRESENT_BIT 3
#define DELTA_CARD_ID_BIT 4
#define DELTA_HALL_BIT 5
#define DELTA_CLOSE_BIT 6
uint8_t i2c_register;
#define I2C_REGISTER_DELTA 1
#define I2C_REGISTER_KEYPAD 2
#define I2C_REGISTER_BUTTON 3
#define I2C_REGISTER_TOUCH 4
#define I2C_REGISTER_RFID_PRESENT 5
#define I2C_REGISTER_RFID_ID 6
#define I2C_REGISTER_HALL 7
#define I2C_REGISTER_CLOSE 8
uint16_t old_keypad_state = 0;
volatile uint16_t keypad_state = 0;
uint16_t old_button_state = 0;
volatile uint16_t button_state = 0;
uint8_t old_touch_state = 0;
volatile uint8_t touch_state = 0;
uint8_t old_card_present = 0;
volatile uint8_t card_present = 0;
#define CARD_ID_LEN 4
uint8_t old_card_id[CARD_ID_LEN] = {0};
volatile uint8_t card_id[CARD_ID_LEN] = {0};
volatile uint16_t adc_buffer[2];
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_I2C1_Init(void);
static void MX_SPI1_Init(void);
static void MX_USART2_UART_Init(void);
static void MX_ADC1_Init(void);
/* USER CODE BEGIN PFP */
#ifdef __GNUC__
/* With GCC/RAISONANCE, small printf (option LD Linker->Libraries->Small printf
set to 'Yes') calls __io_putchar() */
#define PUTCHAR_PROTOTYPE int __io_putchar(int ch)
#else
#define PUTCHAR_PROTOTYPE int fputc(int ch, FILE *f)
#endif /* __GNUC__ */
void scan_keypad(void);
void scan_buttons(void);
void scan_touch(void);
void send_register(void);
void send_interupt(void);
void rfid_check_card(void);
void send_iterupt(void);
void printBinary(uint16_t num) {
for (int i = 15; i >= 0; --i) {
printf("%d", (num >> i) & 1);
}
printf("\r\n");
}
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_DMA_Init();
MX_I2C1_Init();
MX_SPI1_Init();
MX_USART2_UART_Init();
MX_ADC1_Init();
/* USER CODE BEGIN 2 */
rc522_init();
HAL_I2C_EnableListen_IT(&hi2c1);
HAL_ADCEx_Calibration_Start(&hadc1);
HAL_ADC_Start_DMA(&hadc1, (uint32_t*) adc_buffer, 2);
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
// HAL_Delay(1);
scan_keypad();
scan_buttons();
scan_touch();
// rfid_check_card();
send_iterupt();
// printf("%d, %d", adc_buffer[0], adc_buffer[1]);
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Configure the main internal regulator output voltage
*/
HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1);
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSE;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief ADC1 Initialization Function
* @param None
* @retval None
*/
static void MX_ADC1_Init(void)
{
/* USER CODE BEGIN ADC1_Init 0 */
/* USER CODE END ADC1_Init 0 */
ADC_ChannelConfTypeDef sConfig = {0};
/* USER CODE BEGIN ADC1_Init 1 */
/* USER CODE END ADC1_Init 1 */
/** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion)
*/
hadc1.Instance = ADC1;
hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV2;
hadc1.Init.Resolution = ADC_RESOLUTION_12B;
hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc1.Init.ScanConvMode = ADC_SCAN_ENABLE;
hadc1.Init.EOCSelection = ADC_EOC_SEQ_CONV;
hadc1.Init.LowPowerAutoWait = DISABLE;
hadc1.Init.LowPowerAutoPowerOff = DISABLE;
hadc1.Init.ContinuousConvMode = ENABLE;
hadc1.Init.NbrOfConversion = 2;
hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
hadc1.Init.DMAContinuousRequests = ENABLE;
hadc1.Init.Overrun = ADC_OVR_DATA_OVERWRITTEN;
hadc1.Init.SamplingTimeCommon1 = ADC_SAMPLETIME_79CYCLES_5;
hadc1.Init.SamplingTimeCommon2 = ADC_SAMPLETIME_79CYCLES_5;
hadc1.Init.OversamplingMode = DISABLE;
hadc1.Init.TriggerFrequencyMode = ADC_TRIGGER_FREQ_HIGH;
if (HAL_ADC_Init(&hadc1) != HAL_OK)
{
Error_Handler();
}
/** Configure Regular Channel
*/
sConfig.Channel = ADC_CHANNEL_8;
sConfig.Rank = ADC_REGULAR_RANK_1;
sConfig.SamplingTime = ADC_SAMPLINGTIME_COMMON_1;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/** Configure Regular Channel
*/
sConfig.Channel = ADC_CHANNEL_9;
sConfig.Rank = ADC_REGULAR_RANK_2;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN ADC1_Init 2 */
/* USER CODE END ADC1_Init 2 */
}
/**
* @brief I2C1 Initialization Function
* @param None
* @retval None
*/
static void MX_I2C1_Init(void)
{
/* USER CODE BEGIN I2C1_Init 0 */
/* USER CODE END I2C1_Init 0 */
/* USER CODE BEGIN I2C1_Init 1 */
/* USER CODE END I2C1_Init 1 */
hi2c1.Instance = I2C1;
hi2c1.Init.Timing = 0x2000090E;
hi2c1.Init.OwnAddress1 = 252;
hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
hi2c1.Init.OwnAddress2 = 0;
hi2c1.Init.OwnAddress2Masks = I2C_OA2_NOMASK;
hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
if (HAL_I2C_Init(&hi2c1) != HAL_OK)
{
Error_Handler();
}
/** Configure Analogue filter
*/
if (HAL_I2CEx_ConfigAnalogFilter(&hi2c1, I2C_ANALOGFILTER_ENABLE) != HAL_OK)
{
Error_Handler();
}
/** Configure Digital filter
*/
if (HAL_I2CEx_ConfigDigitalFilter(&hi2c1, 0) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN I2C1_Init 2 */
/* USER CODE END I2C1_Init 2 */
}
/**
* @brief SPI1 Initialization Function
* @param None
* @retval None
*/
static void MX_SPI1_Init(void)
{
/* USER CODE BEGIN SPI1_Init 0 */
/* USER CODE END SPI1_Init 0 */
/* USER CODE BEGIN SPI1_Init 1 */
/* USER CODE END SPI1_Init 1 */
/* SPI1 parameter configuration*/
hspi1.Instance = SPI1;
hspi1.Init.Mode = SPI_MODE_MASTER;
hspi1.Init.Direction = SPI_DIRECTION_2LINES;
hspi1.Init.DataSize = SPI_DATASIZE_8BIT;
hspi1.Init.CLKPolarity = SPI_POLARITY_LOW;
hspi1.Init.CLKPhase = SPI_PHASE_1EDGE;
hspi1.Init.NSS = SPI_NSS_SOFT;
hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_2;
hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
hspi1.Init.CRCPolynomial = 7;
hspi1.Init.CRCLength = SPI_CRC_LENGTH_DATASIZE;
hspi1.Init.NSSPMode = SPI_NSS_PULSE_ENABLE;
if (HAL_SPI_Init(&hspi1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN SPI1_Init 2 */
/* USER CODE END SPI1_Init 2 */
}
/**
* @brief USART2 Initialization Function
* @param None
* @retval None
*/
static void MX_USART2_UART_Init(void)
{
/* USER CODE BEGIN USART2_Init 0 */
/* USER CODE END USART2_Init 0 */
/* USER CODE BEGIN USART2_Init 1 */
/* USER CODE END USART2_Init 1 */
huart2.Instance = USART2;
huart2.Init.BaudRate = 115200;
huart2.Init.WordLength = UART_WORDLENGTH_8B;
huart2.Init.StopBits = UART_STOPBITS_1;
huart2.Init.Parity = UART_PARITY_NONE;
huart2.Init.Mode = UART_MODE_TX_RX;
huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart2.Init.OverSampling = UART_OVERSAMPLING_16;
huart2.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
huart2.Init.ClockPrescaler = UART_PRESCALER_DIV1;
huart2.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
if (HAL_UART_Init(&huart2) != HAL_OK)
{
Error_Handler();
}
if (HAL_UARTEx_SetTxFifoThreshold(&huart2, UART_TXFIFO_THRESHOLD_1_8) != HAL_OK)
{
Error_Handler();
}
if (HAL_UARTEx_SetRxFifoThreshold(&huart2, UART_RXFIFO_THRESHOLD_1_8) != HAL_OK)
{
Error_Handler();
}
if (HAL_UARTEx_DisableFifoMode(&huart2) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN USART2_Init 2 */
/* USER CODE END USART2_Init 2 */
}
/**
* Enable DMA controller clock
*/
static void MX_DMA_Init(void)
{
/* DMA controller clock enable */
__HAL_RCC_DMA1_CLK_ENABLE();
/* DMA interrupt init */
/* DMA1_Channel1_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Channel1_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(DMA1_Channel1_IRQn);
}
/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* USER CODE BEGIN MX_GPIO_Init_1 */
/* USER CODE END MX_GPIO_Init_1 */
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOF_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
__HAL_RCC_GPIOD_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(INT_GPIO_Port, INT_Pin, GPIO_PIN_SET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(RFID_CS_GPIO_Port, RFID_CS_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOB, KP_C1_Pin|DEV4_Pin|DEV3_Pin|DEV2_Pin
|DEV1_Pin|DEV0_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(RFID_RST_GPIO_Port, RFID_RST_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(ROW1_GPIO_Port, ROW1_Pin, GPIO_PIN_SET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOD, ROW2_Pin|ROW3_Pin|ROW4_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOB, KP_C2_Pin|KP_C3_Pin|KP_C4_Pin, GPIO_PIN_SET);
/*Configure GPIO pins : COL1_Pin COL2_Pin COL3_Pin RFID_IRQ_Pin */
GPIO_InitStruct.Pin = COL1_Pin|COL2_Pin|COL3_Pin|RFID_IRQ_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
/*Configure GPIO pins : TOUCH_Pin SWT1_Pin SWT4_Pin SWT3_Pin */
GPIO_InitStruct.Pin = TOUCH_Pin|SWT1_Pin|SWT4_Pin|SWT3_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/*Configure GPIO pin : INT_Pin */
GPIO_InitStruct.Pin = INT_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_OD;
GPIO_InitStruct.Pull = GPIO_PULLUP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(INT_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pin : RFID_CS_Pin */
GPIO_InitStruct.Pin = RFID_CS_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(RFID_CS_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pins : KP_C1_Pin DEV4_Pin DEV3_Pin DEV2_Pin
DEV1_Pin DEV0_Pin */
GPIO_InitStruct.Pin = KP_C1_Pin|DEV4_Pin|DEV3_Pin|DEV2_Pin
|DEV1_Pin|DEV0_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/*Configure GPIO pin : SWT2_Pin */
GPIO_InitStruct.Pin = SWT2_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_PULLUP;
HAL_GPIO_Init(SWT2_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pin : RFID_RST_Pin */
GPIO_InitStruct.Pin = RFID_RST_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(RFID_RST_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pins : ROW1_Pin ROW2_Pin ROW3_Pin ROW4_Pin */
GPIO_InitStruct.Pin = ROW1_Pin|ROW2_Pin|ROW3_Pin|ROW4_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);
/*Configure GPIO pins : KP_C2_Pin KP_C3_Pin KP_C4_Pin */
GPIO_InitStruct.Pin = KP_C2_Pin|KP_C3_Pin|KP_C4_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_OD;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/*Configure GPIO pins : KP_R1_Pin KP_R2_Pin KP_R3_Pin KP_R4_Pin */
GPIO_InitStruct.Pin = KP_R1_Pin|KP_R2_Pin|KP_R3_Pin|KP_R4_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_PULLUP;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/* USER CODE BEGIN MX_GPIO_Init_2 */
/* USER CODE END MX_GPIO_Init_2 */
}
/* USER CODE BEGIN 4 */
PUTCHAR_PROTOTYPE
{
/* Place your implementation of fputc here */
/* e.g. write a character to the USART1 and Loop until the end of transmission */
HAL_UART_Transmit(&huart2, (uint8_t *)&ch, 1, 0xFFFF);
return ch;
}
void HAL_I2C_ListenCpltCallback(I2C_HandleTypeDef *hi2c)
{
i2c_register = 0;
HAL_I2C_EnableListen_IT(hi2c);
}
void HAL_I2C_AddrCallback(I2C_HandleTypeDef *hi2c, uint8_t TransferDirection, uint16_t AddrMatchCode) {
if (TransferDirection == I2C_DIRECTION_TRANSMIT) {
HAL_I2C_Slave_Seq_Receive_IT(hi2c, &i2c_register, 1, I2C_NEXT_FRAME);
} else {
send_register();
}
}
uint8_t send_data[2];
void send_register(void) {
switch (i2c_register) {
case I2C_REGISTER_DELTA:
HAL_I2C_Slave_Seq_Transmit_IT(&hi2c1, &delta, 1, I2C_NEXT_FRAME);
break;
case I2C_REGISTER_KEYPAD:
send_data[0] = keypad_state & 0xFF;
send_data[1] = keypad_state >> 8;
HAL_I2C_Slave_Seq_Transmit_IT(&hi2c1, send_data, 2, I2C_NEXT_FRAME);
delta &= ~(1 << DELTA_KP_BIT);
break;
case I2C_REGISTER_BUTTON:
send_data[0] = button_state & 0xFF;
send_data[1] = button_state >> 8;
HAL_I2C_Slave_Seq_Transmit_IT(&hi2c1, send_data, 2, I2C_NEXT_FRAME);
delta &= ~(1 << DELTA_BTN_BIT);
break;
case I2C_REGISTER_TOUCH:
HAL_I2C_Slave_Seq_Transmit_IT(&hi2c1, &touch_state, 1, I2C_NEXT_FRAME);
delta &= ~(1 << DELTA_TOUCH_BIT);
break;
case I2C_REGISTER_RFID_PRESENT:
HAL_I2C_Slave_Seq_Transmit_IT(&hi2c1, &card_present, 1, I2C_NEXT_FRAME);
delta &= ~(1 << DELTA_CARD_PRESENT_BIT);
break;
case I2C_REGISTER_RFID_ID:
HAL_I2C_Slave_Seq_Transmit_IT(&hi2c1, card_id, 4, I2C_NEXT_FRAME);
delta &= ~(1 << DELTA_CARD_ID_BIT);
break;
case I2C_REGISTER_HALL:
send_data[0] = adc_buffer[0] & 0xFF;
send_data[1] = adc_buffer[0] >> 8;
HAL_I2C_Slave_Seq_Transmit_IT(&hi2c1, send_data, 2, I2C_NEXT_FRAME);
delta &= ~(1 << DELTA_HALL_BIT);
break;
case I2C_REGISTER_CLOSE:
send_data[0] = adc_buffer[1] & 0xFF;
send_data[1] = adc_buffer[1] >> 8;
HAL_I2C_Slave_Seq_Transmit_IT(&hi2c1, send_data, 2, I2C_NEXT_FRAME);
delta &= ~(1 << DELTA_CLOSE_BIT);
break;
default:
break;
}
}
void HAL_I2C_SlaveRxCpltCallback(I2C_HandleTypeDef *hi2c)
{
send_register();
}
void HAL_I2C_SlaveTxCpltCallback(I2C_HandleTypeDef *hi2c)
{
}
void scan_keypad(void)
{
uint16_t new_keypad_state = 0;
HAL_GPIO_WritePin(KP_C1_GPIO_Port, KP_C1_Pin, GPIO_PIN_RESET);
new_keypad_state |= (HAL_GPIO_ReadPin(KP_R1_GPIO_Port, KP_R1_Pin) == GPIO_PIN_RESET) << 0;
new_keypad_state |= (HAL_GPIO_ReadPin(KP_R2_GPIO_Port, KP_R2_Pin) == GPIO_PIN_RESET) << 1;
new_keypad_state |= (HAL_GPIO_ReadPin(KP_R3_GPIO_Port, KP_R3_Pin) == GPIO_PIN_RESET) << 2;
new_keypad_state |= (HAL_GPIO_ReadPin(KP_R4_GPIO_Port, KP_R4_Pin) == GPIO_PIN_RESET) << 3;
HAL_GPIO_WritePin(KP_C1_GPIO_Port, KP_C1_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin(KP_C2_GPIO_Port, KP_C2_Pin, GPIO_PIN_RESET);
new_keypad_state |= (HAL_GPIO_ReadPin(KP_R1_GPIO_Port, KP_R1_Pin) == GPIO_PIN_RESET) << 4;
new_keypad_state |= (HAL_GPIO_ReadPin(KP_R2_GPIO_Port, KP_R2_Pin) == GPIO_PIN_RESET) << 5;
new_keypad_state |= (HAL_GPIO_ReadPin(KP_R3_GPIO_Port, KP_R3_Pin) == GPIO_PIN_RESET) << 6;
new_keypad_state |= (HAL_GPIO_ReadPin(KP_R4_GPIO_Port, KP_R4_Pin) == GPIO_PIN_RESET) << 7;
HAL_GPIO_WritePin(KP_C2_GPIO_Port, KP_C2_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin(KP_C3_GPIO_Port, KP_C3_Pin, GPIO_PIN_RESET);
new_keypad_state |= (HAL_GPIO_ReadPin(KP_R1_GPIO_Port, KP_R1_Pin) == GPIO_PIN_RESET) << 8;
new_keypad_state |= (HAL_GPIO_ReadPin(KP_R2_GPIO_Port, KP_R2_Pin) == GPIO_PIN_RESET) << 9;
new_keypad_state |= (HAL_GPIO_ReadPin(KP_R3_GPIO_Port, KP_R3_Pin) == GPIO_PIN_RESET) << 10;
new_keypad_state |= (HAL_GPIO_ReadPin(KP_R4_GPIO_Port, KP_R4_Pin) == GPIO_PIN_RESET) << 11;
HAL_GPIO_WritePin(KP_C3_GPIO_Port, KP_C3_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin(KP_C4_GPIO_Port, KP_C4_Pin, GPIO_PIN_RESET);
new_keypad_state |= (HAL_GPIO_ReadPin(KP_R1_GPIO_Port, KP_R1_Pin) == GPIO_PIN_RESET) << 12;
new_keypad_state |= (HAL_GPIO_ReadPin(KP_R2_GPIO_Port, KP_R2_Pin) == GPIO_PIN_RESET) << 13;
new_keypad_state |= (HAL_GPIO_ReadPin(KP_R3_GPIO_Port, KP_R3_Pin) == GPIO_PIN_RESET) << 14;
new_keypad_state |= (HAL_GPIO_ReadPin(KP_R4_GPIO_Port, KP_R4_Pin) == GPIO_PIN_RESET) << 15;
HAL_GPIO_WritePin(KP_C4_GPIO_Port, KP_C4_Pin, GPIO_PIN_SET);
__disable_irq();
old_keypad_state = keypad_state;
keypad_state = new_keypad_state;
if (keypad_state != old_keypad_state) {
delta |= 1 << DELTA_KP_BIT;
}
__enable_irq();
}
void scan_buttons(void)
{
uint16_t new_button_state = 0;
HAL_GPIO_WritePin(ROW1_GPIO_Port, ROW1_Pin, GPIO_PIN_RESET);
new_button_state |= (HAL_GPIO_ReadPin(COL1_GPIO_Port, COL1_Pin) == GPIO_PIN_RESET) << 0;
new_button_state |= (HAL_GPIO_ReadPin(COL2_GPIO_Port, COL2_Pin) == GPIO_PIN_RESET) << 4;
new_button_state |= (HAL_GPIO_ReadPin(COL3_GPIO_Port, COL3_Pin) == GPIO_PIN_RESET) << 8;
HAL_GPIO_WritePin(ROW1_GPIO_Port, ROW1_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin(ROW2_GPIO_Port, ROW2_Pin, GPIO_PIN_RESET);
new_button_state |= (HAL_GPIO_ReadPin(COL1_GPIO_Port, COL1_Pin) == GPIO_PIN_RESET) << 1;
new_button_state |= (HAL_GPIO_ReadPin(COL2_GPIO_Port, COL2_Pin) == GPIO_PIN_RESET) << 5;
new_button_state |= (HAL_GPIO_ReadPin(COL3_GPIO_Port, COL3_Pin) == GPIO_PIN_RESET) << 9;
HAL_GPIO_WritePin(ROW2_GPIO_Port, ROW2_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin(ROW3_GPIO_Port, ROW3_Pin, GPIO_PIN_RESET);
new_button_state |= (HAL_GPIO_ReadPin(COL1_GPIO_Port, COL1_Pin) == GPIO_PIN_RESET) << 2;
new_button_state |= (HAL_GPIO_ReadPin(COL2_GPIO_Port, COL2_Pin) == GPIO_PIN_RESET) << 6;
new_button_state |= (HAL_GPIO_ReadPin(COL3_GPIO_Port, COL3_Pin) == GPIO_PIN_RESET) << 10;
HAL_GPIO_WritePin(ROW3_GPIO_Port, ROW3_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin(ROW4_GPIO_Port, ROW4_Pin, GPIO_PIN_RESET);
new_button_state |= (HAL_GPIO_ReadPin(COL1_GPIO_Port, COL1_Pin) == GPIO_PIN_RESET) << 3;
new_button_state |= (HAL_GPIO_ReadPin(COL2_GPIO_Port, COL2_Pin) == GPIO_PIN_RESET) << 7;
new_button_state |= (HAL_GPIO_ReadPin(COL3_GPIO_Port, COL3_Pin) == GPIO_PIN_RESET) << 11;
HAL_GPIO_WritePin(ROW4_GPIO_Port, ROW4_Pin, GPIO_PIN_SET);
new_button_state |= HAL_GPIO_ReadPin(SWT1_GPIO_Port, SWT1_Pin) << 12;
new_button_state |= HAL_GPIO_ReadPin(SWT2_GPIO_Port, SWT2_Pin) << 13;
new_button_state |= HAL_GPIO_ReadPin(SWT3_GPIO_Port, SWT3_Pin) << 14;
new_button_state |= HAL_GPIO_ReadPin(SWT4_GPIO_Port, SWT4_Pin) << 15;
__disable_irq();
old_button_state = button_state;
button_state = new_button_state;
if (button_state != old_button_state) {
delta |= 1 << DELTA_BTN_BIT;
}
__enable_irq();
}
void scan_touch(void)
{
uint16_t new_touch_state = HAL_GPIO_ReadPin(TOUCH_GPIO_Port, TOUCH_Pin);
old_touch_state = touch_state;
touch_state = new_touch_state;
if (touch_state != old_touch_state) {
delta |= 1 << DELTA_TOUCH_BIT;
}
}
void rfid_check_card() {
old_card_present = card_present;
for (int i = 0; i < CARD_ID_LEN; i++) {
old_card_id[i] = card_id[i];
}
card_present = rc522_checkCard(card_id);
// set delta
if (old_card_present != card_present) {
delta |= 1 << DELTA_CARD_PRESENT_BIT;
}
for (int i = 0; i < CARD_ID_LEN; i++) {
if (old_card_id[i] != card_id[i]) {
delta |= 1 << DELTA_CARD_ID_BIT;
break;
}
}
}
void send_interupt(void)
{
if (delta != old_delta) {
old_delta = delta;
HAL_GPIO_WritePin(INT_GPIO_Port, INT_Pin, delta != 0);
}
}
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */