Add wires solver

This commit is contained in:
Mitchell Marino 2024-08-04 15:51:39 -05:00
parent be7c1bc20e
commit 8b41f98659
10 changed files with 613 additions and 10 deletions

View File

@ -1,5 +1,7 @@
idf_component_register(SRCS "main.cpp" "drivers/TM1640/TM16xx.cpp" "drivers/TM1640/TM1640.cpp" "drivers/bottom_half.cpp"
INCLUDE_DIRS "")
idf_component_register(SRCS "main.cpp"
INCLUDE_DIRS ".")
add_subdirectory(drivers)
add_subdirectory(steps)
set(EXTRA_COMPONENT_DIRS components)

View File

@ -0,0 +1,7 @@
set(SOURCES
"TM1640/TM16xx.cpp"
"TM1640/TM1640.cpp"
"bottom_half.cpp"
)
target_sources(${COMPONENT_LIB} PRIVATE ${SOURCES})

View File

@ -17,6 +17,16 @@ static uint8_t touch_released;
/// read buffer
static uint8_t read_buf[8];
void clear_all_pressed_released(void) {
keypad_pressed = 0;
button_pressed = 0;
touch_pressed = 0;
keypad_released = 0;
button_released = 0;
touch_released = 0;
}
static bool _take_key(KeypadKey* kp, uint16_t* keypad_bitfield) {
for (int i = 0; i < 16; i++) {
int bit_selector = (1 << i);
@ -76,6 +86,66 @@ char char_of_keypad_key(KeypadKey kp) {
}
}
static bool _take_button(ButtonKey* button, uint16_t* button_bitfield) {
for (int i = 0; i < 4; i++) {
int bit_selector = (1 << (i+8));
if ((*button_bitfield) & bit_selector) {
*button = (ButtonKey) i;
// clear bit
*button_bitfield &= ~bit_selector;
return true;
}
}
return false;
}
static bool _take_switch(SwitchKey* switch_, uint16_t* button_bitfield) {
for (int i = 0; i < 4; i++) {
int bit_selector = (1 << i);
if ((*button_bitfield) & bit_selector) {
*switch_ = (SwitchKey) i;
// clear bit
*button_bitfield &= ~bit_selector;
return true;
}
}
return false;
}
bool get_pressed_button(ButtonKey* button) {
return _take_button(button, &button_pressed);
}
bool get_released_button(ButtonKey* button) {
return _take_button(button, &button_released);
}
uint8_t get_button_state() {
return (uint8_t)((button_state >> 8) & 0xF);
}
bool get_flipped_up_switch(SwitchKey* switch_) {
return _take_switch(switch_, &button_released);
}
bool get_flipped_down_switch(SwitchKey* switch_) {
return _take_switch(switch_, &button_released);
}
bool get_flipped_switch(SwitchKey* switch_) {
for (int i = 0; i < 4; i++) {
int bit_selector = (1 << (i+4));
if (button_pressed & bit_selector || button_released & bit_selector) {
*switch_ = (SwitchKey) i;
// clear bit
button_pressed &= ~bit_selector;
button_released &= ~bit_selector;
return true;
}
}
return false;
}
uint8_t get_switch_state(uint8_t* switch_flags) {
return (uint8_t)(button_state && 0xF);
}
static void poll_bottom_task(void *arg);
// static void IRAM_ATTR gpio_isr_handler(void* arg)
@ -144,6 +214,7 @@ static void receive_button(void) {
read_buf[1] = 0;
ESP_ERROR_CHECK_WITHOUT_ABORT(i2c_master_write_read_device(BOTTOM_I2C_NUM, BOTTOM_I2C_ADDR, &reg, 1, read_buf, 2, (100 / portTICK_PERIOD_MS)));
uint16_t new_button_state = read_buf[0] | (read_buf[1] << 8);
ESP_LOGI("jjj", "New Button State: %d", new_button_state);
uint16_t just_pressed = new_button_state & ~button_state;
button_pressed |= just_pressed;

View File

@ -31,10 +31,35 @@ typedef enum {
kd = 15,
} KeypadKey;
typedef enum {
b1 = 0,
b2 = 1,
b3 = 2,
b4 = 3,
} ButtonKey;
typedef enum {
s1 = 0,
s2 = 1,
s3 = 2,
s4 = 3,
} SwitchKey;
void clear_all_pressed_released(void);
bool get_pressed_keypad(KeypadKey* kp);
bool get_released_keypad(KeypadKey* kp);
char char_of_keypad_key(KeypadKey kp);
bool get_pressed_button(ButtonKey* button);
bool get_released_button(ButtonKey* button);
uint8_t get_button_state();
bool get_flipped_up_switch(SwitchKey* switch_);
bool get_flipped_down_switch(SwitchKey* switch_);
bool get_flipped_switch(SwitchKey* switch_);
uint8_t get_switch_state(uint8_t* switch_flags);
static void poll_bottom_task(void *arg);
void init_bottom_half();

View File

@ -15,6 +15,11 @@
#include "steps/step0.hpp"
#include "steps/step1.hpp"
#include "steps/step2.hpp"
#include "steps/step3.hpp"
#include "steps/step4.hpp"
#include "steps/step5.hpp"
#include "steps/step6.hpp"
#define WIRES_ADDR 125
#define WIRES_REG_WIRES
@ -38,6 +43,11 @@ extern "C" void app_main(void) {
step0();
step1();
step2();
step3();
step4();
step5();
step6();
// create_demo_ui();

View File

@ -0,0 +1,5 @@
set(SOURCES
"wires_puzzle.cpp"
)
target_sources(${COMPONENT_LIB} PRIVATE ${SOURCES})

View File

@ -0,0 +1,93 @@
#ifndef SETUP_WIRES_HPP
#define SETUP_WIRES_HPP
#include "../drivers/bottom_half.h"
#include "../drivers/char_lcd.hpp"
#include "wires_puzzle.h"
#include <esp_log.h>
void setup_wires(void) {
clear_all_pressed_released();
lcd_clear(&lcd);
WiresColor wires[NUM_WIRES];
load_wires_from_sd_card(wires);
bool cut[NUM_WIRES];
solve_wires(wires, cut);
lcd_set_cursor(&lcd, 1, 1);
char wires_string[NUM_WIRES+1] = {0};
wires_to_string(wires, wires_string);
lcd_print(&lcd, wires_string);
lcd_set_cursor(&lcd, 1, 2);
cut_to_string(cut, wires_string);
lcd_print(&lcd, wires_string);
lcd_set_cursor(&lcd, 1, 1);
int editing_idx = 0;
KeypadKey key;
ButtonKey button;
while (1) {
while (get_pressed_keypad(&key)) {
if (key == KeypadKey::k1) {
generate_new_wires(wires);
save_wires_to_sd_card(wires);
bool cut[NUM_WIRES];
solve_wires(wires, cut);
lcd_set_cursor(&lcd, 1, 1);
char wires_string[NUM_WIRES+1] = {0};
wires_to_string(wires, wires_string);
lcd_print(&lcd, wires_string);
lcd_set_cursor(&lcd, 1, 2);
cut_to_string(cut, wires_string);
lcd_print(&lcd, wires_string);
lcd_set_cursor(&lcd, editing_idx+1, 1);
} else if (key == KeypadKey::pound) {
lcd_no_cursor(&lcd);
return;
}
}
while (get_pressed_button(&button)) {
ESP_LOGI("setup_wires", "Button press: %d", (int)button);
if (button == ButtonKey::b1) {
// left
editing_idx = editing_idx - 1;
if (editing_idx < 0) editing_idx = 0;
} else if (button == ButtonKey::b4) {
// right
editing_idx = editing_idx + 1;
if (editing_idx >= NUM_WIRES) editing_idx = NUM_WIRES-1;
} else if (button == ButtonKey::b2) {
// down
wires[editing_idx] = (WiresColor)(((int)(wires[editing_idx]) + (NUM_COLORS-1)) % NUM_COLORS);
} else if (button == ButtonKey::b3) {
// up
wires[editing_idx] = (WiresColor)(((int)(wires[editing_idx]) + 1) % NUM_COLORS);
}
save_wires_to_sd_card(wires);
lcd_set_cursor(&lcd, 1, 1);
char wires_string[NUM_WIRES+1] = {0};
wires_to_string(wires, wires_string);
lcd_print(&lcd, wires_string);
bool cut[NUM_WIRES];
solve_wires(wires, cut);
lcd_set_cursor(&lcd, 1, 2);
cut_to_string(cut, wires_string);
lcd_print(&lcd, wires_string);
lcd_set_cursor(&lcd, editing_idx+1, 1);
}
vTaskDelay(pdMS_TO_TICKS(10));
}
}
#endif /* SETUP_WIRES_HPP */

View File

@ -4,6 +4,7 @@
#include "../drivers/bottom_half.h"
#include "../drivers/char_lcd.hpp"
#include "../drivers/wires.hpp"
#include "setup_wires.hpp"
static const char *STEP0_TAG = "step0";
@ -26,16 +27,24 @@ void step0(void) {
current_idx = 1;
} else if (key == KeypadKey::pound) {
// submit
if (strcmp(current, "*9819") == 0) {
if (current[0] == '\0') {
// do nothing
} else if (strcmp(current, "*9819") == 0) {
lcd_set_cursor(&lcd, 1, 2);
lcd_print(&lcd, "Diffusal Initated");
vTaskDelay(pdMS_TO_TICKS(2000));
lcd_clear(&lcd);
return;
} else if (strcmp(current, "*59861") == 0) {
lcd_set_cursor(&lcd, 1, 2);
lcd_print(&lcd, "Set Up Wires");
vTaskDelay(pdMS_TO_TICKS(2000));
setup_wires();
} else {
lcd_set_cursor(&lcd, 1, 2);
lcd_print(&lcd, "Invalid Star Code");
strike("Invalid Star Code");
vTaskDelay(pdMS_TO_TICKS(2000));
}
// clear
@ -43,8 +52,6 @@ void step0(void) {
current[i] = 0;
}
current_idx = 0;
vTaskDelay(pdMS_TO_TICKS(2000));
} else {
// out of room. skip
if (current_idx >= STRING_MAX_LEN) break;
@ -60,10 +67,6 @@ void step0(void) {
lcd_set_cursor(&lcd, 1, 1);
lcd_print(&lcd, current);
}
while (get_released_keypad(&key)) {
char c = char_of_keypad_key(key);
// ESP_LOGI(STEP0_TAG, "Released: %c", c);
}
vTaskDelay(pdMS_TO_TICKS(10));
}

347
main/steps/wires_puzzle.cpp Normal file
View File

@ -0,0 +1,347 @@
#include "wires_puzzle.h"
const static char* WIRES_FILE_PATH = "/sdcard/wires.txt";
const static char* TAG = "wires_puzzle";
static int color_name_len[NUM_COLORS] = {
3, // red
6, // yellow
5, // green
4, // blue
5, // black
5, // white
};
static int max(int n0, int n1, int n2, int n3, int n4, int n5);
void wires_to_string(WiresColor* wires, char* out_wires_string) {
for (int i = 0; i < NUM_WIRES; i++) {
switch (wires[i]) {
case WiresColor::red:
out_wires_string[i] = 'r';
break;
case WiresColor::yellow:
out_wires_string[i] = 'y';
break;
case WiresColor::green:
out_wires_string[i] = 'g';
break;
case WiresColor::blue:
out_wires_string[i] = 'u';
break;
case WiresColor::black:
out_wires_string[i] = 'b';
break;
case WiresColor::white:
out_wires_string[i] = 'w';
break;
}
}
}
void cut_to_string(bool* cut, char* out_cut_string) {
for (int i = 0; i < NUM_WIRES; i++) {
if (cut[i]) {
out_cut_string[i] = 'c';
} else {
out_cut_string[i] = ' ';
}
}
}
void string_to_wires(char* wires_string, WiresColor* out_wires) {
for (int i = 0; i < NUM_WIRES; i++) {
switch (wires_string[i]) {
case 'r':
out_wires[i] = WiresColor::red;
break;
case 'y':
out_wires[i] = WiresColor::yellow;
break;
case 'g':
out_wires[i] = WiresColor::green;
break;
case 'u':
out_wires[i] = WiresColor::blue;
break;
case 'b':
out_wires[i] = WiresColor::black;
break;
case 'w':
out_wires[i] = WiresColor::white;
break;
}
}
}
void save_wires_to_sd_card(WiresColor* wires) {
FILE* f = fopen(WIRES_FILE_PATH, "w");
if (f == NULL) {
ESP_LOGE(TAG, "Failed to open wires file to write");
}
char wires_string[NUM_WIRES+1] = {0};
wires_to_string(wires, wires_string);
fprintf(f, wires_string);
fclose(f);
}
void load_wires_from_sd_card(WiresColor* out_wires) {
FILE* f = fopen(WIRES_FILE_PATH, "r");
if (f == NULL) {
ESP_LOGW(TAG, "Failed to read wires file. Generating new wires");
generate_new_wires(out_wires);
save_wires_to_sd_card(out_wires);
return;
}
char wires_string[NUM_WIRES+1] = {0};
fgets(wires_string, sizeof(wires_string), f);
fclose(f);
string_to_wires(wires_string, out_wires);
}
/// @brief Fills the array with 6 random WiresColors.
/// @param wires and array of len >= 6 to be populated with random colors
void generate_new_wires(WiresColor* wires) {
for (int w = 0; w < NUM_WIRES; w++) {
// roughly evenly distributed
uint32_t rand = esp_random() % NUM_COLORS;
wires[w] = (WiresColor)(rand);
}
bool cuts[NUM_WIRES] = {0};
solve_wires(wires, cuts);
int num_cuts = 0;
for (int i = 0; i < NUM_WIRES; i++) {
if (cuts[i]) num_cuts++;
}
// regenerate if there are less than 3 cuts.
if (num_cuts < 3) {
return generate_new_wires(wires);
}
}
void solve_wires(WiresColor* wires, bool* out_cut) {
// by default, don't cut any wires
for (int i = 0; i < NUM_WIRES; i++) {
out_cut[i] = false;
}
// Find all positions of all wire colors
int red_pos[NUM_WIRES + 1] = {0};
int red_pos_len = 0;
int yellow_pos[NUM_WIRES + 1] = {0};
int yellow_pos_len = 0;
int green_pos[NUM_WIRES + 1] = {0};
int green_pos_len = 0;
int blue_pos[NUM_WIRES + 1] = {0};
int blue_pos_len = 0;
int black_pos[NUM_WIRES + 1] = {0};
int black_pos_len = 0;
int white_pos[NUM_WIRES + 1] = {0};
int white_pos_len = 0;
for (int i = 0; i < NUM_WIRES; i++) {
if (wires[i] == WiresColor::red) {
red_pos[red_pos_len++] = i;
} else if (wires[i] == WiresColor::yellow) {
yellow_pos[yellow_pos_len++] = i;
} else if (wires[i] == WiresColor::green) {
green_pos[green_pos_len++] = i;
} else if (wires[i] == WiresColor::blue) {
blue_pos[blue_pos_len++] = i;
} else if (wires[i] == WiresColor::black) {
black_pos[black_pos_len++] = i;
} else if (wires[i] == WiresColor::white) {
white_pos[white_pos_len++] = i;
}
}
int* list_pos[NUM_COLORS] = {
red_pos,
yellow_pos,
green_pos,
blue_pos,
black_pos,
white_pos
};
int list_pos_len[NUM_COLORS] = {
red_pos_len,
yellow_pos_len,
green_pos_len,
blue_pos_len,
black_pos_len,
white_pos_len
};
// CUT CHECKS
// cut the second wire of all most common colors
int max_len = max(red_pos_len, yellow_pos_len, green_pos_len, blue_pos_len, black_pos_len, white_pos_len);
if (max_len >= 2) {
for (int i = 0; i < NUM_COLORS; i++) {
if (list_pos_len[i] == max_len) {
int idx = list_pos[i][1];
out_cut[idx] = true;
}
}
}
// cut the first wire if it is green or white
if (wires[0] == WiresColor::green || wires[0] == WiresColor::white) out_cut[0] = true;
// cut blue wires in even positions (odd indexes)
for (int i = 1; i < NUM_WIRES; i += 2) {
if (wires[i] == WiresColor::blue) out_cut[i] = true;
}
// cut black and yellow wires next to black and yellow wires
for (int i = 0; i < NUM_WIRES-1; i++) {
if (
(wires[i] == WiresColor::yellow || wires[i] == WiresColor::black) &&
(wires[i+1] == WiresColor::yellow || wires[i+1] == WiresColor::black)
) {
out_cut[i] = true;
out_cut[1] = true;
}
}
// cut the last green wire next to a yellow or white wire
for (int green_idx = green_pos_len-1; green_idx >= 0; green_idx--) {
int pos = green_pos[green_idx];
if (
wires[pos-1] == WiresColor::yellow ||
wires[pos-1] == WiresColor::white ||
wires[pos+1] == WiresColor::yellow ||
wires[pos+1] == WiresColor::white
) {
out_cut[pos] = true;
break;
}
}
// cut all white wires if there is a red wire in the 5th position
if (wires[4] == WiresColor::red) {
for (int white_idx = 0; white_idx < white_pos_len; white_idx++) {
out_cut[white_pos[white_idx]] = true;
}
}
// cut the first black wire if there are more white wires than green wires
if (white_pos_len > green_pos_len && black_pos_len > 0) {
out_cut[black_pos[0]] = true;
}
// cut all wires in an alternating pattern of 2 colors at least 4 wires long
for (int i = 0; i < NUM_WIRES-3; i++) {
if (
wires[i] == wires[i+2] &&
wires[i+1] == wires[i+3] &&
wires[i] == wires[i+1]
) {
out_cut[i] = true;
out_cut[i+1] = true;
out_cut[i+2] = true;
out_cut[i+3] = true;
}
}
// cut any wires if their position matches the number of letters in the color's name
for (int i = 0; i < NUM_WIRES; i++) {
if (color_name_len[i] == i+1) {
out_cut[i] = true;
}
}
// cut all red wires if there are no more than 2 wires of the same color
if (max_len <= 2) {
for (int i = 0; i < red_pos_len; i++) {
out_cut[red_pos[i]] = true;
}
}
// cut the last wire if it is the same color as the first wire
if (wires[0] == wires[NUM_WIRES-1]) {
out_cut[NUM_WIRES-1] = true;
}
// cut any wire adjacent to both a yellow and blue wire
for (int i = 0; i < NUM_WIRES-2; i++) {
if (
(wires[i] == WiresColor::yellow && wires[i+2] == WiresColor::blue) ||
(wires[i] == WiresColor::blue && wires[i+2] == WiresColor::white)
) {
out_cut[i+1] = true;
}
}
// NEVER CUT
// never cut blue wires next to red or green wires
for (int i = 0; i < blue_pos_len; i++) {
int pos = blue_pos[i];
if (
wires[pos-1] == WiresColor::red ||
wires[pos-1] == WiresColor::green ||
wires[pos+1] == WiresColor::red ||
wires[pos+1] == WiresColor::green
) {
out_cut[pos] = false;
}
}
// never cut white wires if there is at least one red, black and green wire
if (red_pos_len > 0 && green_pos_len > 0 && black_pos_len > 0) {
for (int i = 0; i < white_pos_len; i++) {
out_cut[white_pos[i]] = false;
}
}
// never cut red or black wires in the 4th or 7th positions
if (wires[3] == WiresColor::red || wires[3] == WiresColor::black) {
out_cut[3] = false;
}
if (wires[6] == WiresColor::red || wires[6] == WiresColor::black) {
out_cut[6] = false;
}
// never cut wires that have the same color on both sides of it
for (int i = 0; i < NUM_WIRES-2; i++) {
if (wires[i] == wires[i+2]) {
out_cut[i+1] = false;
}
}
// never cut a wire in the 1st, 2nd, or 3rd position if it is the same color as the wire in the 4th position.
if (wires[0] == wires[3]) {
out_cut[0] = false;
}
if (wires[1] == wires[3]) {
out_cut[1] = false;
}
if (wires[2] == wires[3]) {
out_cut[2] = false;
}
// never cut a blue or green wire in the 8th postion
if (wires[7] == WiresColor::blue || wires[7] == WiresColor::green) {
out_cut[7] = false;
}
// never cut a wire in the 5th position if there are no yellow wires
if (yellow_pos_len == 0) {
out_cut[4] = false;
}
}
static int max(int n0, int n1, int n2, int n3, int n4, int n5) {
int max = n0;
if (n1 > max) max = n1;
if (n2 > max) max = n2;
if (n3 > max) max = n3;
if (n4 > max) max = n4;
if (n5 > max) max = n5;
return max;
}

40
main/steps/wires_puzzle.h Normal file
View File

@ -0,0 +1,40 @@
#ifndef WIRES_PUZZLE_H
#define WIRES_PUZZLE_H
#include <stdint.h>
#include <esp_random.h>
#include <string.h>
#include "esp_vfs_fat.h"
#define NUM_COLORS 6
#define NUM_WIRES 8
typedef enum {
red = 0,
yellow = 1,
green = 2,
blue = 3,
black = 4,
white = 5,
} WiresColor;
void solve_wires(WiresColor* wires, bool* out_cut);
void generate_new_wires(WiresColor* wires);
void cut_to_string(bool* cut, char* out_cut_string);
void wires_to_string(WiresColor* wires, char* out_wires_string);
void string_to_wires(char* wires_string, WiresColor* out_wires);
void save_wires_to_sd_card(WiresColor* wires);
void load_wires_from_sd_card(WiresColor* out_wires);
/// @brief Fills the array with 6 random WiresColors.
/// @param wires the array of len >= 6 to be populated with random colors
void generate_new_wires(WiresColor* wires);
/// @brief Solves the wires puzzle, setting `out_cut` according to which wires are cut.
/// @param wires the array of len >= 6 as input to the solver
/// @param out_cut the output array of len >= 6 for which wires to cut
void solve_wires(WiresColor* wires, bool* out_cut);
#endif /* WIRES_PUZZLE_H */