step 3 prelim

This commit is contained in:
Drake Marino 2024-08-10 00:03:27 -05:00
parent 074faf8879
commit b74536b057
5 changed files with 677 additions and 31 deletions

View File

@ -28,10 +28,10 @@ typedef enum {
switch3 = 14,
switch2 = 15,
switch1 = 16,
button1 = 17,
button2 = 18,
button3 = 19,
button4 = 20,
button4 = 17,
button3 = 18,
button2 = 19,
button1 = 20,
} Led;
void init_leds(void);

View File

@ -42,11 +42,12 @@ extern "C" void app_main(void) {
// create_demo_ui();
clean_bomb();
// step0();
// set_game_time(30000);
// start_game_timer();
// clean_bomb();
// step1();
step0();
set_game_time(30000);
start_game_timer();
clean_bomb();
step1();
clean_bomb();
step2();
clean_bomb();
@ -54,7 +55,7 @@ extern "C" void app_main(void) {
clean_bomb();
step4();
clean_bomb();
// step5();
step5();
clean_bomb();
step6();
clean_bomb();

View File

@ -15,9 +15,10 @@ static const int INDICATOR_BLUE[6] = {0, 30, 0, 0, 15, 10};
void step3(void) {
int solved_puzzles = 0;
while (solved_puzzles < 3) {
lcd_set_cursor(&lcd, 1, 1);
// int puzzle = puzzle_dist(gen);
int puzzle = 2;
int puzzle = puzzle_dist(gen);
// int puzzle = 8;
switch (puzzle) {
case 0: {
lcd_print(&lcd, "Clear");
@ -32,6 +33,7 @@ void step3(void) {
// ESP_LOGI(TAG, "green indicators: %i", green_indicators);
// ***CHANGE TO PUZZLE 5 METHOD***
while (indicators.size() < green_indicators) {
int led = led_picker_dist(gen);
indicators.insert(led);
@ -164,31 +166,25 @@ void step3(void) {
bool keypad_lit = lit_led_dist(gen);
bool tft_lit = lit_led_dist(gen);
Led rfid_led = rfid;
Led lcd_led = char_lcd;
Led speaker_led = speaker;
Led keypad_led = keypad;
Led tft_led = tft;
if (rfid_lit) {
int color = led_color_dist(gen);
ESP_ERROR_CHECK(led_strip_set_pixel(leds, rfid_led, INDICATOR_RED[color], INDICATOR_GREEN[color], INDICATOR_BLUE[color]));
ESP_ERROR_CHECK(led_strip_set_pixel(leds, 10, INDICATOR_RED[color], INDICATOR_GREEN[color], INDICATOR_BLUE[color]));
}
if (lcd_lit) {
int color = led_color_dist(gen);
ESP_ERROR_CHECK(led_strip_set_pixel(leds, lcd_led, INDICATOR_RED[color], INDICATOR_GREEN[color], INDICATOR_BLUE[color]));
ESP_ERROR_CHECK(led_strip_set_pixel(leds, 12, INDICATOR_RED[color], INDICATOR_GREEN[color], INDICATOR_BLUE[color]));
}
if (speaker_lit) {
int color = led_color_dist(gen);
ESP_ERROR_CHECK(led_strip_set_pixel(leds, speaker_led, INDICATOR_RED[color], INDICATOR_GREEN[color], INDICATOR_BLUE[color]));
ESP_ERROR_CHECK(led_strip_set_pixel(leds, 9, INDICATOR_RED[color], INDICATOR_GREEN[color], INDICATOR_BLUE[color]));
}
if (keypad_lit) {
int color = led_color_dist(gen);
ESP_ERROR_CHECK(led_strip_set_pixel(leds, keypad_led, INDICATOR_RED[color], INDICATOR_GREEN[color], INDICATOR_BLUE[color]));
ESP_ERROR_CHECK(led_strip_set_pixel(leds, 11, INDICATOR_RED[color], INDICATOR_GREEN[color], INDICATOR_BLUE[color]));
}
if (tft_lit) {
int color = led_color_dist(gen);
ESP_ERROR_CHECK(led_strip_set_pixel(leds, tft_led, INDICATOR_RED[color], INDICATOR_GREEN[color], INDICATOR_BLUE[color]));
ESP_ERROR_CHECK(led_strip_set_pixel(leds, 6, INDICATOR_RED[color], INDICATOR_GREEN[color], INDICATOR_BLUE[color]));
}
ESP_ERROR_CHECK(led_strip_refresh(leds));
@ -288,6 +284,59 @@ void step3(void) {
set_module_time(10000);
start_module_timer();
const int COLOR_RED[4] = {0, 20, 10, 0};
const int COLOR_GREEN[4] = {20, 0, 10, 0};
const int COLOR_BLUE[4] = {0, 0, 0, 20};
static std::uniform_int_distribution<> color_dist(0, 3);
int tft_color = color_dist(gen);
int speaker_color = color_dist(gen);
int s3_color = color_dist(gen);
ESP_ERROR_CHECK(led_strip_set_pixel(leds, 6, COLOR_RED[tft_color], COLOR_GREEN[tft_color], COLOR_BLUE[tft_color]));
ESP_ERROR_CHECK(led_strip_set_pixel(leds, 9, COLOR_RED[speaker_color], COLOR_GREEN[speaker_color], COLOR_BLUE[speaker_color]));
ESP_ERROR_CHECK(led_strip_set_pixel(leds, 14, COLOR_RED[s3_color], COLOR_GREEN[s3_color], COLOR_BLUE[s3_color]));
ESP_ERROR_CHECK(led_strip_refresh(leds));
int buttons_pressed = 0;
ButtonKey button;
while (1) {
if (get_pressed_button(&button)) {
buttons_pressed++;
uint8_t button_state = get_button_state();
if (buttons_pressed == 1) {
if ((button_state >> tft_color) != 0b1) {
strike("Wrong button pressed! (step 3, puzzle 3)");
break;
}
} else if (buttons_pressed == 2) {
if ((button_state >> speaker_color) != 0b1) {
strike("Wrong button pressed! (step 3, puzzle 3)");
break;
}
} else if (buttons_pressed == 3) {
if ((button_state >> s3_color) != 0b1) {
strike("Wrong button pressed! (step 3, puzzle 3)");
} else {
solved_puzzles++;
}
break;
}
}
if (get_module_time() <= 0) {
strike("Ran out of time! (step 3, puzzle 3)");
break;
}
vTaskDelay(pdMS_TO_TICKS(10));
}
break;
}
@ -296,14 +345,231 @@ void step3(void) {
set_module_time(10000);
start_module_timer();
// buttons
const int BUTTON_COLOR_RED[4] = {0, 20, 10, 0};
const int BUTTON_COLOR_GREEN[4] = {10, 0, 5, 0};
const int BUTTON_COLOR_BLUE[4] = {0, 0, 0, 10};
static std::uniform_int_distribution<> button_color_dist(0, 3);
int b1_color = button_color_dist(gen);
int b2_color = button_color_dist(gen);
int b3_color = button_color_dist(gen);
int b4_color = button_color_dist(gen);
ESP_ERROR_CHECK(led_strip_set_pixel(leds, 20, BUTTON_COLOR_RED[b1_color], BUTTON_COLOR_GREEN[b1_color], BUTTON_COLOR_BLUE[b1_color]));
ESP_ERROR_CHECK(led_strip_set_pixel(leds, 19, BUTTON_COLOR_RED[b2_color], BUTTON_COLOR_GREEN[b2_color], BUTTON_COLOR_BLUE[b2_color]));
ESP_ERROR_CHECK(led_strip_set_pixel(leds, 18, BUTTON_COLOR_RED[b3_color], BUTTON_COLOR_GREEN[b3_color], BUTTON_COLOR_BLUE[b3_color]));
ESP_ERROR_CHECK(led_strip_set_pixel(leds, 17, BUTTON_COLOR_RED[b4_color], BUTTON_COLOR_GREEN[b4_color], BUTTON_COLOR_BLUE[b4_color]));
// switches
const int SWITCH_COLOR_RED[3] = {20, 0, 10};
const int SWITCH_COLOR_GREEN[3] = {0, 10, 5};
static std::uniform_int_distribution<> switch_color_dist(0, 2);
int switch_colors[4] = {switch_color_dist(gen), switch_color_dist(gen), switch_color_dist(gen), switch_color_dist(gen)};
// int s1_color = switch_color_dist(gen);
// int s2_color = switch_color_dist(gen);
// int s3_color = switch_color_dist(gen);
// int s4_color = switch_color_dist(gen);
for (int i = 0; i < 4; i++) {
ESP_ERROR_CHECK(led_strip_set_pixel(leds, (16 - i), SWITCH_COLOR_RED[switch_colors[i]], SWITCH_COLOR_GREEN[switch_colors[i]], 0));
}
// ESP_ERROR_CHECK(led_strip_set_pixel(leds, 16, SWITCH_COLOR_RED[s1_color], SWITCH_COLOR_GREEN[s1_color], 0));
// ESP_ERROR_CHECK(led_strip_set_pixel(leds, 15, SWITCH_COLOR_RED[s2_color], SWITCH_COLOR_GREEN[s2_color], 0));
// ESP_ERROR_CHECK(led_strip_set_pixel(leds, 14, SWITCH_COLOR_RED[s3_color], SWITCH_COLOR_GREEN[s3_color], 0));
// ESP_ERROR_CHECK(led_strip_set_pixel(leds, 13, SWITCH_COLOR_RED[s4_color], SWITCH_COLOR_GREEN[s4_color], 0));
ESP_ERROR_CHECK(led_strip_refresh(leds));
ButtonKey button;
uint8_t starting_switch_state = get_switch_state();
while (1) {
if (get_pressed_button(&button)) {
uint8_t button_state = get_button_state();
// change button colors
if ((button_state & 0b1) == 0b1) {
b1_color++;
if (b1_color > 3) {
b1_color = 0;
}
ESP_ERROR_CHECK(led_strip_set_pixel(leds, 20, BUTTON_COLOR_RED[b1_color], BUTTON_COLOR_GREEN[b1_color], BUTTON_COLOR_BLUE[b1_color]));
}
if ((button_state & 0b10) == 0b10) {
b2_color++;
if (b2_color > 3) {
b2_color = 0;
}
ESP_ERROR_CHECK(led_strip_set_pixel(leds, 19, BUTTON_COLOR_RED[b2_color], BUTTON_COLOR_GREEN[b2_color], BUTTON_COLOR_BLUE[b2_color]));
}
if ((button_state & 0b100) == 0b100) {
b3_color++;
if (b3_color > 3) {
b3_color = 0;
}
ESP_ERROR_CHECK(led_strip_set_pixel(leds, 18, BUTTON_COLOR_RED[b3_color], BUTTON_COLOR_GREEN[b3_color], BUTTON_COLOR_BLUE[b3_color]));
}
if ((button_state & 0b1000) == 0b1000) {
b4_color++;
if (b4_color > 3) {
b4_color = 0;
}
ESP_ERROR_CHECK(led_strip_set_pixel(leds, 17, BUTTON_COLOR_RED[b4_color], BUTTON_COLOR_GREEN[b4_color], BUTTON_COLOR_BLUE[b4_color]));
}
ESP_ERROR_CHECK(led_strip_refresh(leds));
}
if (get_module_time() <= 0) {
// check button state
if (b1_color == 0 && b2_color == 1 && b3_color == 2 && b4_color == 3) {
// check switch state
uint8_t switch_state = get_switch_state();
bool correct = true;
ESP_LOGI(TAG, "starting switch state: %i, current switch state: %i", starting_switch_state, switch_state);
for (int i = 0; i < 4; i++) {
if (switch_colors[i] == 2) {
// ESP_LOGI(TAG, "color yellow triggered: %i", (((switch_state ^ starting_switch_state) >> i) & 0b1));
if ((((switch_state ^ starting_switch_state) >> i) & 0b1) != 1) {
correct = false;
break;
}
} else {
// ESP_LOGI(TAG, "color green or red triggered: %i != %i", ((switch_state >> i) & 0b1), (switch_colors[i] & 0b1));
if (((switch_state >> i) & 0b1) != (switch_colors[i] & 0b1)) {
correct = false;
break;
}
}
}
if (correct) {
solved_puzzles++;
} else {
strike("Wrong switch state! (step 3, puzzle 4)");
}
} else {
strike("Wrong button state! (step 3, puzzle 4)");
}
break;
}
vTaskDelay(pdMS_TO_TICKS(10));
}
break;
}
case 5: {
lcd_print(&lcd, "Ummm");
set_module_time(10000);
set_module_time(30000);
start_module_timer();
std::uniform_int_distribution<> indicator_number_dist(0, 5);
uint8_t green_indicators = indicator_number_dist(gen);
uint8_t red_indicators = indicator_number_dist(gen);
uint8_t yellow_indicators = indicator_number_dist(gen);
uint8_t blue_indicators = indicator_number_dist(gen);
// ESP_LOGI(TAG, "Green: %i, Red: %i, Yellow: %i, Blue: %i", green_indicators, red_indicators, yellow_indicators, blue_indicators);
std::set<uint8_t> indicators;
while (indicators.size() < green_indicators) {
uint8_t led = led_picker_dist(gen);
if (indicators.insert(led).second) {
ESP_ERROR_CHECK(led_strip_set_pixel(leds, led, 0, 10, 0));
}
}
while (indicators.size() < (green_indicators + red_indicators)) {
uint8_t led = led_picker_dist(gen);
if (indicators.insert(led).second) {
ESP_ERROR_CHECK(led_strip_set_pixel(leds, led, 15, 0, 0));
}
}
while (indicators.size() < (green_indicators + red_indicators + yellow_indicators)) {
uint8_t led = led_picker_dist(gen);
if (indicators.insert(led).second) {
ESP_ERROR_CHECK(led_strip_set_pixel(leds, led, 10, 5, 0));
}
}
while (indicators.size() < (green_indicators + red_indicators + yellow_indicators + blue_indicators)) {
uint8_t led = led_picker_dist(gen);
if (indicators.insert(led).second) {
ESP_ERROR_CHECK(led_strip_set_pixel(leds, led, 0, 0, 10));
}
}
ESP_ERROR_CHECK(led_strip_refresh(leds));
uint8_t green_pressed = 0;
uint8_t red_pressed = 0;
uint8_t yellow_pressed = 0;
uint8_t blue_pressed = 0;
ButtonKey button;
while (1) {
if (get_pressed_button(&button)) {
uint8_t button_state = get_button_state();
if ((button_state & 0b1) == 0b1) {
green_pressed++;
if (green_pressed > green_indicators) {
strike("Green button pressed too many times! (step 3, puzzle 5)");
}
}
if ((button_state & 0b10) == 0b10) {
red_pressed++;
if (red_pressed > red_indicators) {
strike("Red button pressed too many times! (step 3, puzzle 5)");
}
}
if ((button_state & 0b100) == 0b100) {
yellow_pressed++;
if (yellow_pressed > yellow_indicators) {
strike("Yellow button pressed too many times! (step 3, puzzle 5)");
}
}
if ((button_state & 0b1000) == 0b1000) {
blue_pressed++;
if (blue_pressed > blue_indicators) {
strike("Blue button pressed too many times! (step 3, puzzle 5)");
}
}
}
if (get_module_time() <= 0) {
// check for correct button presses
if (green_pressed == green_indicators && red_pressed == red_indicators && yellow_pressed == yellow_indicators && blue_pressed == blue_indicators) {
uint8_t switch_state = get_switch_state();
// ESP_LOGI(TAG, "%i, %i, %i, %i", (~green_indicators & 0b1), ((~red_indicators & 0b1) << 1), ((~yellow_indicators & 0b1) << 2), ((~blue_indicators & 0b1) << 3));
// ESP_LOGI(TAG, "correct: %i, inputted: %i", ((~green_indicators & 0b1) | (~red_indicators & 0b1) << 1) | (~yellow_indicators & 0b1) << 2) | (~blue_indicators & 0b1) << 3)), switch_state);
// check for correct switch states
if (((~green_indicators & 0b1) + ((~red_indicators & 0b1) << 1) + ((~yellow_indicators & 0b1) << 2) + ((~blue_indicators & 0b1) << 3)) == switch_state) {
solved_puzzles++;
} else {
strike("Wrong switch state! (step 3, puzzle 5)");
}
} else {
strike("Wrong button state! (step 3, puzzle 5)");
}
break;
}
vTaskDelay(pdMS_TO_TICKS(10));
}
break;
}
@ -312,14 +578,268 @@ void step3(void) {
set_module_time(10000);
start_module_timer();
// red, purple, blue, white, green, yellow
const uint8_t COLORS_RED[6] = {20, 10, 0, 5, 0, 10};
const uint8_t COLORS_GREEN[6] = {0, 0, 0, 5, 10, 5};
const uint8_t COLORS_BLUE[6] = {0, 10, 10, 5, 0, 0};
int button_colors[4] = {led_color_dist(gen), led_color_dist(gen), led_color_dist(gen), led_color_dist(gen)};
for (int i = 0; i < 4; i++) {
ESP_ERROR_CHECK(led_strip_set_pixel(leds, (20 - i), COLORS_RED[button_colors[i]], COLORS_GREEN[button_colors[i]], COLORS_BLUE[button_colors[i]]));
}
ESP_ERROR_CHECK(led_strip_refresh(leds));
bool buttons_cycling[4] = {true, true, true, true};
TickType_t lastCycleTime = xTaskGetTickCount();
ButtonKey button;
while (1) {
if (get_pressed_button(&button)) {
uint8_t button_state = get_button_state();
bool correct = true;
if (button_state & 0b1) {
if (button_colors[0] != 4) {
correct = false;
} else {
buttons_cycling[0] = false;
}
}
if (button_state & 0b10) {
if (button_colors[1] != 0) {
correct = false;
} else {
buttons_cycling[1] = false;
}
}
if (button_state & 0b100) {
if (button_colors[2] != 5) {
correct = false;
} else {
buttons_cycling[2] = false;
}
}
if (button_state & 0b1000) {
if (button_colors[3] != 2) {
correct = false;
} else {
buttons_cycling[3] = false;
}
}
if (!correct) {
strike("Paused buttons at the wrong time! (step 3, puzzle 6)");
break;
}
}
if ((xTaskGetTickCount() - lastCycleTime) >= pdMS_TO_TICKS(500)) {
ESP_LOGI(TAG, "Cycling LEDs");
for (int i = 0; i < 4; i++) {
if (buttons_cycling[i]) {
button_colors[i]++;
if (button_colors[i] > 5) {
button_colors[i] = 0;
}
ESP_ERROR_CHECK(led_strip_set_pixel(leds, (20 - i), COLORS_RED[button_colors[i]], COLORS_GREEN[button_colors[i]], COLORS_BLUE[button_colors[i]]));
}
}
ESP_ERROR_CHECK(led_strip_refresh(leds));
lastCycleTime = xTaskGetTickCount();
}
if (get_module_time() <= 0) {
bool failed = false;
for (int i = 0; i < sizeof(buttons_cycling); i++) {
if (buttons_cycling[i] == true) {
failed = true;
}
}
if (failed) {
strike("Ran out of time! (step 3, puzzle 6)");
} else {
solved_puzzles++;
}
break;
}
vTaskDelay(pdMS_TO_TICKS(10));
}
// *** ADD PART 2 ***
break;
}
case 7: {
lcd_print(&lcd, "What");
set_module_time(10000);
set_module_time(30000);
start_module_timer();
std::uniform_int_distribution<> math_number_dist(1, 9);
std::uniform_int_distribution<> math_operation_dist(0, 3);
std::vector<float> math_numbers;
std::vector<int> math_operations;
// ESP_LOGI(TAG, "math_numbers: %f, %f, %f, %f", math_numbers[0], math_numbers[1], math_numbers[2], math_numbers[3]);
// ESP_LOGI(TAG, "math_operations: %i, %i, %i", math_operations[0], math_operations[1], math_operations[2]);
std::map<int, char> operation_map = {
{0, '+'},
{1, '-'},
{2, '*'},
{3, '/'},
};
int expression_answer = -1;
std::string display_expression;
while (expression_answer < 0) {
math_numbers = {static_cast<float>(math_number_dist(gen)), static_cast<float>(math_number_dist(gen)), static_cast<float>(math_number_dist(gen)), static_cast<float>(math_number_dist(gen))};
math_operations = {math_operation_dist(gen), math_operation_dist(gen), math_operation_dist(gen)};
display_expression = std::to_string(static_cast<int>(math_numbers[0]));
for (int i = 0; i < 3; i++) {
display_expression += operation_map[math_operations[i]];
display_expression += std::to_string(static_cast<int>(math_numbers[i + 1]));
}
for (int j = 0; j < 3; j++) {
bool found = false;
for (int i = 0; i < math_operations.size(); i++) {
if (math_operations[i] == 2) {
// ESP_LOGI(TAG, "i = %i, condensing %f * %f to %f", i, math_numbers[i], math_numbers[i + 1], (math_numbers[i] * math_numbers[i+1]));
math_numbers[i] = math_numbers[i] * math_numbers[i + 1];
math_numbers.erase(math_numbers.begin() + i + 1);
math_operations.erase(math_operations.begin() + i);
found = true;
break;
} else if (math_operations[i] == 3) {
// ESP_LOGI(TAG, "i = %i, condensing %f / %f to %f", i, math_numbers[i], math_numbers[i + 1], (math_numbers[i] / math_numbers[i+1]));
math_numbers[i] = math_numbers[i] / math_numbers[i + 1];
math_numbers.erase(math_numbers.begin() + i + 1);
math_operations.erase(math_operations.begin() + i);
found = true;
break;
}
}
if (found) {
continue;
}
for (int i = 0; i < math_operations.size(); i++) {
if (math_operations[i] == 0) {
// ESP_LOGI(TAG, "i = %i, condensing %f + %f to %f", i, math_numbers[i], math_numbers[i + 1], (math_numbers[i] + math_numbers[i+1]));
math_numbers[i] = math_numbers[i] + math_numbers[i + 1];
math_numbers.erase(math_numbers.begin() + i + 1);
math_operations.erase(math_operations.begin() + i);
found = true;
break;
} else if (math_operations[i] == 1) {
// ESP_LOGI(TAG, "i = %i, condensing %f - %f to %f", i, math_numbers[i], math_numbers[i + 1], (math_numbers[i] - math_numbers[i+1]));
math_numbers[i] = math_numbers[i] - math_numbers[i + 1];
math_numbers.erase(math_numbers.begin() + i + 1);
math_operations.erase(math_operations.begin() + i);
found = true;
break;
}
}
}
expression_answer = static_cast<int>(std::floor(math_numbers[0]));
}
// display expression
lcd_set_cursor(&lcd, 1, 2);
lcd_print(&lcd, display_expression.c_str());
// ESP_LOGI(TAG, "Display expression: %s", display_expression.c_str());
// ESP_LOGI(TAG, "Solved expression answer: %i", static_cast<int>(expression_answer));
// set LEDs
std::uniform_int_distribution<> indicator_number_dist(0, 5);
uint8_t green_indicators = indicator_number_dist(gen);
uint8_t red_indicators = indicator_number_dist(gen);
uint8_t blue_indicators = indicator_number_dist(gen);
while (((expression_answer + (blue_indicators * 3) - red_indicators) * (green_indicators ^ 2)) < 0) {
green_indicators = indicator_number_dist(gen);
red_indicators = indicator_number_dist(gen);
blue_indicators = indicator_number_dist(gen);
}
// ESP_LOGI(TAG, "Green: %i, Red: %i, Blue: %i", green_indicators, red_indicators, blue_indicators);
std::set<uint8_t> indicators;
while (indicators.size() < green_indicators) {
uint8_t led = led_picker_dist(gen);
if (indicators.insert(led).second) {
ESP_ERROR_CHECK(led_strip_set_pixel(leds, led, 0, 10, 0));
}
}
while (indicators.size() < (green_indicators + red_indicators)) {
uint8_t led = led_picker_dist(gen);
if (indicators.insert(led).second) {
ESP_ERROR_CHECK(led_strip_set_pixel(leds, led, 15, 0, 0));
}
}
while (indicators.size() < (green_indicators + red_indicators + blue_indicators)) {
uint8_t led = led_picker_dist(gen);
if (indicators.insert(led).second) {
ESP_ERROR_CHECK(led_strip_set_pixel(leds, led, 0, 0, 10));
}
}
ESP_ERROR_CHECK(led_strip_refresh(leds));
// *** ALSO IMPLEMENT LAST STEPS ***
std::string answer_string = std::to_string(expression_answer);
std::string entered_string;
// ESP_LOGI(TAG, "Solved full answer: %s", answer_string.c_str());
KeypadKey key;
while (1) {
if (get_pressed_keypad(&key)) {
if (key == KeypadKey::star) {
// clear
entered_string = "";
} else if (key == KeypadKey::pound) {
// submit
if (entered_string != answer_string) {
strike("Entered answer is not correct! (step 3, puzzle 7)");
} else {
solved_puzzles++;
}
break;
} else {
entered_string += char_of_keypad_key(key);
}
lcd_clear(&lcd);
lcd_set_cursor(&lcd, 1, 1);
lcd_print(&lcd, "What");
lcd_set_cursor(&lcd, 1, 2);
lcd_print(&lcd, display_expression.c_str());
lcd_set_cursor(&lcd, 1, 3);
lcd_print(&lcd, entered_string.c_str());
}
if (get_module_time() <= 0) {
strike("Ran out of time! (step 3, puzzle 7)");
break;
}
vTaskDelay(pdMS_TO_TICKS(10));
}
break;
}
@ -328,12 +848,135 @@ void step3(void) {
set_module_time(10000);
start_module_timer();
std::uniform_int_distribution<> indicator_number_dist(0, 4);
uint8_t green_indicators = indicator_number_dist(gen);
uint8_t red_indicators = indicator_number_dist(gen);
uint8_t yellow_indicators = indicator_number_dist(gen);
uint8_t blue_indicators = indicator_number_dist(gen);
uint8_t purple_indicators = indicator_number_dist(gen);
// ESP_LOGI(TAG, "Green: %i, Red: %i, Yellow: %i, Blue: %i", green_indicators, red_indicators, yellow_indicators, blue_indicators);
std::set<uint8_t> indicators;
while (indicators.size() < green_indicators) {
uint8_t led = led_picker_dist(gen);
if (indicators.insert(led).second) {
ESP_ERROR_CHECK(led_strip_set_pixel(leds, led, 0, 10, 0));
}
}
while (indicators.size() < (green_indicators + red_indicators)) {
uint8_t led = led_picker_dist(gen);
if (indicators.insert(led).second) {
ESP_ERROR_CHECK(led_strip_set_pixel(leds, led, 15, 0, 0));
}
}
while (indicators.size() < (green_indicators + red_indicators + yellow_indicators)) {
uint8_t led = led_picker_dist(gen);
if (indicators.insert(led).second) {
ESP_ERROR_CHECK(led_strip_set_pixel(leds, led, 10, 5, 0));
}
}
while (indicators.size() < (green_indicators + red_indicators + yellow_indicators + blue_indicators)) {
uint8_t led = led_picker_dist(gen);
if (indicators.insert(led).second) {
ESP_ERROR_CHECK(led_strip_set_pixel(leds, led, 0, 0, 10));
}
}
while (indicators.size() < (green_indicators + red_indicators + yellow_indicators + blue_indicators + purple_indicators)) {
uint8_t led = led_picker_dist(gen);
if (indicators.insert(led).second) {
ESP_ERROR_CHECK(led_strip_set_pixel(leds, led, 10, 0, 5));
}
}
ESP_ERROR_CHECK(led_strip_refresh(leds));
std::uniform_int_distribution<> answer_color_dist(0, 4);
int answer_color = answer_color_dist(gen);
std::string color_string;
std::string answer_num;
switch (answer_color) {
case 0: {
answer_num = std::to_string(green_indicators);
color_string = "Green";
break;
}
case 1: {
answer_num = std::to_string(red_indicators);
color_string = "Red";
break;
}
case 2: {
answer_num = std::to_string(yellow_indicators);
color_string = "Yellow";
break;
}
case 3: {
answer_num = std::to_string(blue_indicators);
color_string = "Blue";
break;
}
case 4: {
answer_num = std::to_string(purple_indicators);
color_string = "Purple";
break;
}
}
// ESP_LOGI(TAG, "color string: %s", color_string.c_str());
lcd_set_cursor(&lcd, 1, 2);
lcd_print(&lcd, color_string.c_str());
std::string entered_string;
KeypadKey key;
while (1) {
if (get_pressed_keypad(&key)) {
if (key == KeypadKey::star) {
// clear
entered_string = "";
} else if (key == KeypadKey::pound) {
// submit
if (entered_string != answer_num) {
strike("Entered answer is not correct! (step 3, puzzle 7)");
} else {
solved_puzzles++;
}
break;
} else {
entered_string += char_of_keypad_key(key);
}
lcd_clear(&lcd);
lcd_set_cursor(&lcd, 1, 1);
lcd_print(&lcd, "Plink");
lcd_set_cursor(&lcd, 1, 2);
lcd_print(&lcd, color_string.c_str());
lcd_set_cursor(&lcd, 1, 3);
lcd_print(&lcd, entered_string.c_str());
}
if (get_module_time() <= 0) {
strike("Ran out of time! (step 3, puzzle 7)");
break;
}
vTaskDelay(pdMS_TO_TICKS(10));
}
break;
}
}
vTaskDelay(pdMS_TO_TICKS(1000));
clean_bomb();
}
}

View File

@ -10,6 +10,9 @@
#include <random>
#include <iostream>
#include <set>
#include <map>
#include <vector>
#include <cmath>
static const char *STEP3_TAG = "step3";

View File

@ -2,7 +2,6 @@
static const char *TAG = "step5";
static Led speaker_led = speaker;
// one: 0b00000110
// seven: 0b00000111
static const uint8_t SSEG_NUMS[8] = {0b00111111, 0b01011011, 0b01001111, 0b01100110, 0b01101101, 0b01111101, 0b01111111, 0b01101111};
@ -14,9 +13,9 @@ static const uint8_t SSEG_MAPS[5][4] = {
{0b01000111, 0b00011001, 0b01111000, 0b00111110}
};
static const int INDICATOR_RED[5] = {30, 0, 0, 25, 10};
static const int INDICATOR_GREEN[5] = {0, 0, 30, 5, 10};
static const int INDICATOR_BLUE[5] = {0, 30, 0, 0, 10};
static const int INDICATOR_RED[5] = {15, 0, 0, 10, 5};
static const int INDICATOR_GREEN[5] = {0, 0, 10, 5, 5};
static const int INDICATOR_BLUE[5] = {0, 10, 0, 0, 5};
// random number generators
static std::random_device rd;
@ -46,7 +45,7 @@ std::map<int, int> number_map = {
static void new_puzzle(void) {
// scramble lights
for (int i = 0; i < 5; i++) {
led_strip_set_pixel(leds, speaker_led, INDICATOR_RED[map_dist(gen)], INDICATOR_GREEN[map_dist(gen)], INDICATOR_BLUE[map_dist(gen)]);
led_strip_set_pixel(leds, 9, INDICATOR_RED[map_dist(gen)], INDICATOR_GREEN[map_dist(gen)], INDICATOR_BLUE[map_dist(gen)]);
led_strip_refresh(leds);
uint8_t random_segments[4] = {0, 0, 0, 0};
@ -70,7 +69,7 @@ static void new_puzzle(void) {
}
// ESP_LOGI(TAG, "Chosen Map: %i", chosen_map);
ESP_ERROR_CHECK(led_strip_set_pixel(leds, speaker_led, INDICATOR_RED[chosen_map], INDICATOR_GREEN[chosen_map], INDICATOR_BLUE[chosen_map]));
ESP_ERROR_CHECK(led_strip_set_pixel(leds, 9, INDICATOR_RED[chosen_map], INDICATOR_GREEN[chosen_map], INDICATOR_BLUE[chosen_map]));
ESP_ERROR_CHECK(led_strip_refresh(leds));
for (int i = 0; i < 8; i++) {