#include "step4.h" #define ONE_SECOND_TIME 90'000 #define THREE_SECOND_TIME 90'000 #define SIX_SECOND_TIME 75'000 static const char *TAG = "step4"; static int tone = 0; static int times = 0; static const char* TONE_FILES[] = { MOUNT_POINT "/low-1.pcm", MOUNT_POINT "/low-3.pcm", MOUNT_POINT "/low-6.pcm", MOUNT_POINT "/high-1.pcm", MOUNT_POINT "/high-3.pcm", MOUNT_POINT "/high-6.pcm", }; static const char* LCD_STRINGS[] = { "something", "nothing", "", "a word", "somethink", "what?", "LCD", "display", }; static int indicator_led_idxs[LED_COUNT] = {0}; static bool contains_coconut = false; static char* COCONUT = "coconut"; static char lcd_random_char_set[] = "aeiou tnsrhldm"; static char random_lcd_text[21] = {0}; static std::random_device rd; static std::mt19937 gen(rd()); static std::uniform_int_distribution<> tone_dist(0, 5); static std::uniform_int_distribution<> color_dist(0, 6); static std::uniform_int_distribution<> lcd_string_dist(0, 7); static std::uniform_int_distribution<> lcd_number_dist(0, 15); static std::uniform_int_distribution<> lcd_rand_char_dist(0, sizeof(lcd_random_char_set)-2); static std::uniform_int_distribution<> has_coconut_dist(0, 2); static std::uniform_int_distribution<> coconut_position_dist(0, 13); static uint8_t NEOPIXEL_COLORS[7][3] = { {20, 0, 0}, // red {20, 10, 0}, // orange {20, 20, 0}, // yellow {0, 20, 0}, // green {0, 0, 20}, // blue {20, 0, 20}, // purple {0, 0, 0}, // off }; static bool one_second(); static bool three_second(); static bool six_second(); void step4(void) { StarCodeHandler star_codes[] = { { .code = "*1642", .display_text = "Starting...", .should_exit = true, .callback = nullptr, }, }; int len = sizeof(star_codes)/sizeof(StarCodeHandler); do_star_codes(star_codes, len); while (times < 4) { tone = tone_dist(gen); // tone = 2; while (get_pressed_button(nullptr)) vTaskDelay(pdMS_TO_TICKS(10)); play_raw(MOUNT_POINT "/que.pcm"); play_raw(TONE_FILES[tone]); bool correct = false; switch (tone % 3) { case 0: correct = one_second(); break; case 1: correct = three_second(); break; case 2: correct = six_second(); break; } if (correct) { times++; clean_bomb(); play_raw(MOUNT_POINT "/correct.pcm"); } else { vTaskDelay(pdMS_TO_TICKS(1500)); } vTaskDelay(pdMS_TO_TICKS(3000)); } } static void generate_random_lcd_text(void) { for (int i = 0; i < 20; i++) { int char_idx = lcd_rand_char_dist(gen); random_lcd_text[i] = lcd_random_char_set[char_idx]; } contains_coconut = (has_coconut_dist(gen) == 0); if (contains_coconut) { int idx = coconut_position_dist(gen); for (int i = 0; i < 7; i++) { random_lcd_text[idx+i] = COCONUT[i]; // ESP_LOGI(TAG, "Writing idx %d to %c. Is %c", idx+i, COCONUT[i], random_lcd_text[idx+i]); } // ESP_LOGI(TAG, "Now: %s", random_lcd_text); } } /// Sets the leds to random values. /// /// This does not flush the leds. static void rng_leds() { for (int i = 0; i < LED_COUNT; i++) { indicator_led_idxs[i] = color_dist(gen); } } static void write_leds() { // update all the leds for (int i = 0; i < LED_COUNT; i++) { auto colors = NEOPIXEL_COLORS[indicator_led_idxs[i]]; led_strip_set_pixel(leds, i, colors[0], colors[1], colors[2]); } led_strip_refresh(leds); } static uint8_t four_bit_flag(bool b0, bool b1, bool b2, bool b3) { return (b0 << 0) | (b1 << 1) | (b2 << 2) | (b3 << 3) ; } static void print_bin(char* out_str, uint8_t n) { out_str[0] = ((n & 0b1000) ? '1' : '0'); out_str[1] = ((n & 0b0100) ? '1' : '0'); out_str[2] = ((n & 0b0010) ? '1' : '0'); out_str[3] = ((n & 0b0001) ? '1' : '0'); out_str[4] = ' '; out_str[5] = 'i'; out_str[6] = 'n'; out_str[7] = ' '; out_str[8] = 'o'; out_str[9] = 'r'; out_str[10] = 'd'; out_str[11] = 'e'; out_str[12] = 'r'; out_str[13] = ':'; out_str[14] = ' '; out_str[15] = ((n & 0b0001) ? '1' : '0'); out_str[16] = ((n & 0b0010) ? '1' : '0'); out_str[17] = ((n & 0b0100) ? '1' : '0'); out_str[18] = ((n & 0b1000) ? '1' : '0'); } static void debug_correct_values(uint8_t correct_buttons, uint8_t button_mask, uint8_t correct_switches) { char buf[20] = {0}; print_bin(buf, correct_switches); ESP_LOGI(TAG, "Expected Switch State: 0b%s", buf); print_bin(buf, correct_buttons); ESP_LOGI(TAG, "Expected Button State: 0b%s", buf); print_bin(buf, button_mask); ESP_LOGI(TAG, "Button Mask: 0b%s", buf); } static void debug_actual_values(uint8_t buttons, uint8_t switch_) { char buf[20] = {0}; print_bin(buf, switch_); ESP_LOGI(TAG, "Actual Switch State: 0b%s", buf); print_bin(buf, buttons); ESP_LOGI(TAG, "Actual Button State: 0b%s", buf); ESP_LOGI(TAG, ""); } static void wait_for_timer(void) { KeypadKey key; while (get_module_time() > 0) { if (get_pressed_keypad(&key) && key == KeypadKey::kd) { set_module_time(0); return; } vTaskDelay(pdMS_TO_TICKS(100)); } } static bool one_second() { clean_bomb(); set_module_time(ONE_SECOND_TIME); start_module_timer(); rng_leds(); int speaker_color = indicator_led_idxs[Led::speaker]; int lcd_string_idx = lcd_string_dist(gen); bool was_high = (tone / 3) == 1; write_leds(); lcd_clear(&lcd); lcd_set_cursor(&lcd, 1, 1); lcd_print(&lcd, LCD_STRINGS[lcd_string_idx]); int red_led_count = 0; int blue_led_count = 0; for (int i = 0; i < LED_COUNT; i++) { if (indicator_led_idxs[i] == 0) { red_led_count++; } else if (indicator_led_idxs[i] == 4) { blue_led_count++; } } uint8_t correct_switches = four_bit_flag( speaker_color == 0 || speaker_color == 1 || speaker_color == 2, lcd_string_idx == 0 || lcd_string_idx == 1, was_high, !was_high ); uint8_t correct_button_mask = 0b1011; uint8_t correct_buttons = four_bit_flag( indicator_led_idxs[Led::char_lcd] != 6, // green red_led_count > blue_led_count, // red 0, // yellow UNCHECKED indicator_led_idxs[Led::rfid] == 4 || indicator_led_idxs[Led::rfid] == 6 // blue ); debug_correct_values(correct_buttons, correct_button_mask, correct_switches); wait_for_timer(); debug_actual_values(get_button_state(), get_switch_state()); if (get_switch_state() != correct_switches) { clean_bomb(); strike("Incorrect Switches"); return false; } if ((get_button_state() & correct_button_mask) != correct_buttons) { clean_bomb(); strike("Incorrect Buttons"); return false; } return true; } static bool three_second() { clean_bomb(); set_module_time(THREE_SECOND_TIME); start_module_timer(); int lcd_number = lcd_number_dist(gen); char lcd_number_string[9] = {0}; sprintf(lcd_number_string, "%d", lcd_number); lcd_set_cursor(&lcd, 1, 1); lcd_print(&lcd, lcd_number_string); bool was_high = (tone / 3) == 1; rng_leds(); write_leds(); int red_led_count = 0; int blue_led_count = 0; for (int i = 0; i < LED_COUNT; i++) { if (indicator_led_idxs[i] == 0) { red_led_count++; } else if (indicator_led_idxs[i] == 4) { blue_led_count++; } } // reverse the ordering of the bits uint8_t correct_switches = four_bit_flag( (lcd_number >> 3) & 1, (lcd_number >> 2) & 1, (lcd_number >> 1) & 1, (lcd_number >> 0) & 1 ); if (!was_high) { correct_switches = (~correct_switches) & 0b1111; } uint8_t correct_button_mask = 0b1110; uint8_t correct_buttons = four_bit_flag( 0, // green UNCHECKED was_high, // red (lcd_number % 2) == 0, // yellow blue_led_count > red_led_count // blue ); debug_correct_values(correct_buttons, correct_button_mask, correct_switches); wait_for_timer(); debug_actual_values(get_button_state(), get_switch_state()); if (get_switch_state() != correct_switches) { clean_bomb(); strike("Incorrect Switches"); return false; } if ((get_button_state() & correct_button_mask) != correct_buttons) { clean_bomb(); strike("Incorrect Buttons"); return false; } return true; } static bool six_second() { clean_bomb(); set_module_time(SIX_SECOND_TIME); start_module_timer(); generate_random_lcd_text(); vTaskDelay(pdMS_TO_TICKS(10)); lcd_set_cursor(&lcd, 0, 0); lcd_print(&lcd, random_lcd_text); int vowels = 0; for (int i = 0; i < 20; i++) { char c = random_lcd_text[i]; if (c == 'a' || c == 'e' || c == 'i' || c == 'o' || c == 'u') { vowels++; } } bool was_high = (tone / 3) == 1; bool second_switch_correct_state = (indicator_led_idxs[Led::switch2] == 0) || (indicator_led_idxs[Led::switch2] == 6); second_switch_correct_state = second_switch_correct_state || was_high; rng_leds(); write_leds(); int green_led_count = 0; int blue_led_count = 0; for (int i = 0; i < LED_COUNT; i++) { if (indicator_led_idxs[i] == 4) { blue_led_count++; } else if (indicator_led_idxs[i] == 3) { green_led_count++; } } int purple_led_on_bottom_count = 0; for (int i = Led::rfid; i < LED_COUNT; i++) { if (indicator_led_idxs[i] == 5) { purple_led_on_bottom_count++; } } uint8_t correct_switches = four_bit_flag( vowels > 7, second_switch_correct_state, true, !(purple_led_on_bottom_count > 1) ); uint8_t correct_button_mask = 0b1101; uint8_t correct_buttons = four_bit_flag( (!was_high) || (green_led_count >= 2) || indicator_led_idxs[Led::keypad] == 4, // green 0, // red UNCHECKED blue_led_count >= 3, // yellow contains_coconut // blue ); debug_correct_values(correct_buttons, correct_button_mask, correct_switches); wait_for_timer(); debug_actual_values(get_button_state(), get_switch_state()); if (get_switch_state() != correct_switches) { clean_bomb(); strike("Incorrect Switches"); return false; } if ((get_button_state() & correct_button_mask) != correct_buttons) { clean_bomb(); strike("Incorrect Buttons"); return false; } return true; }