remaining dist and brake time version

This commit is contained in:
Drake Marino 2024-10-18 20:32:02 -05:00
parent 56bf063682
commit 3686061e3a

View File

@ -1,120 +1,299 @@
#include <Arduino.h>
#include <DMXSerial.h>
//#include <DMXSerial.h>
#include <PID_v1.h>
#include <PWM.h>
// Motor Driver: IBT-2 (BTS7960)
#define LPWM_PIN 9 // LPWM for CCW motion (postive)
#define RPWM_PIN 10 // RPWM for CW motion (negative)
#define L_EN_PIN 11 // Both enable pins must be high to drive motor
#define R_EN_PIN 12 // Both enable pins must be high to drive motor
// #define SENSOR_PIN A0
#define RPWM_PIN 9
#define LPWM_PIN 10
#define L_EN_PIN 11
#define R_EN_PIN 12
// Encoder p/n: e38s6g5-600b-g24n
#define ENCODER_A 2
#define ENCODER_B 3
// LED indicators to follow motor pwm output
#define LLED_PIN 5
#define RLED_PIN 6
#define ENCODER_PPR 6000 // pulses per revolution
#define ENCODER_RATIO 1.0f // number of times encoder spins per revolution of wall
#define MOTOR_RATIO 5.0f // number of time motor spins per revolution of wall
#define MOTOR_MAX_RPM 330.0f // p/n MY1016Z3 rated 300 rpm @ 24VDC; enter measured value
#define MOTOR_MIN_PWM 30 // enter value required for motor to start turning
#define MAX_MOTOR_ACCELERATION (MOTOR_MAX_RPM / 5.0f) // (RPM/s): 0 to max in 0.5s
#define MAX_WALL_ACCELERATION MAX_MOTOR_ACCELERATION / MOTOR_RATIO
#define WALL_POSITION_TOLERANCE 0.00056 // acceptable error in wall position (2 degrees = 0.0056 rev)
#define SAMPLE_RATE 100.0f // min time (ms) between velocity calculations
#define LOOP_RATE 100.0f // min time (ms) between control adjustments. ** Must be >= SAMPLE_RATE **
const int DMX_CHANNEL = 1;
double pidGain = 0.01;
double currentPosition = 0;
double targetPosition = 0;
// int positionDif = 0;
double pidPWM = 0;
double motorPWM = 0;
double lastSwitch = 0;
long encoderPosition = 0; // raw count from encoder
double maxWallVelocity = MOTOR_MAX_RPM / MOTOR_RATIO;
double currentPosition = 0; // wall (revolutions)
double prevPosition = 0; // wall (revolutions)
double targetPosition = 0; // wall (revolutions)
double currentVelocity = 0; // wall velocity (rpm)
double targetMotorVelocity = 0; // motor velocity (rpm)
unsigned long prevSample = 0; // time tracker for sensor sampling rate
unsigned long prevControl = 0; // time tracker for control loop
double remainingDistance = 0; // wall distance from current to target (revolutions)
double remainingTime = 0; // estimate of time to get from current position to target (s)
double stopTime = 0; // estimate of time to decelerate to zero
int motorPWM = 0; // motor PWM level to achieve target motor velocity (0-255)
PID pid(&currentPosition, &pidPWM, &targetPosition, 0.2, 0.0, 0.1, DIRECT);
// Serial Input processor:
const byte numChars = 32;
char receivedChars[numChars]; // an array to store the received data
boolean newData = false;
void updateEncoder() {
if (digitalRead(ENCODER_B) == LOW) {
currentPosition++; // CCW
} else {
currentPosition--; // CW
}
}
// Function Prototypes:
void updateEncoder(); // react to encoder pulse and update encoder count
double encoderToPosition(long); // convert encoder count to wall position
int Velocity_to_PWM(double); // function to convert motor velocity to PWM drive signal
void recvWithEndMarker(); // read Serial input
void showNewData(); // act on Serial input
PID pid = PID(&currentPosition, &targetMotorVelocity, &targetPosition, 600, 0.25, 5.0, DIRECT);
void setup() {
Serial.begin(115200);
// Configure DMX shield (MAX485 chipset)
// DMXSerial.init(DMXReceiver);
// DMXSerial.write(DMX_CHANNEL, 0);
// Initialize GPIO pins:
pinMode(RPWM_PIN, OUTPUT);
pinMode(LPWM_PIN, OUTPUT);
pinMode(L_EN_PIN, OUTPUT);
pinMode(R_EN_PIN, OUTPUT);
pinMode(LLED_PIN, OUTPUT);
pinMode(RLED_PIN, OUTPUT);
pinMode(ENCODER_A, INPUT_PULLUP);
pinMode(ENCODER_B, INPUT_PULLUP);
// Start encoder:
attachInterrupt(digitalPinToInterrupt(ENCODER_A), updateEncoder, RISING);
// Start the Motor Driver - Set Frequency, start both PWM low, Enable both sides:
InitTimersSafe();
SetPinFrequencySafe(9, 10000);
digitalWrite(LPWM_PIN, LOW);
digitalWrite(RPWM_PIN, LOW);
digitalWrite(L_EN_PIN, HIGH);
digitalWrite(R_EN_PIN, HIGH);
pid.SetSampleTime(10);
pid.SetMode(AUTOMATIC);
pid.SetSampleTime(50);
pid.SetOutputLimits(-255, 255);
pid.SetOutputLimits(-330, 330);
pinMode(5, OUTPUT);
pinMode(6, OUTPUT);
digitalWrite(LPWM_PIN, HIGH);
digitalWrite(RPWM_PIN, HIGH);
lastSwitch = millis();
// initialize loop timers
prevSample = millis();
prevControl = millis();
}
void loop() {
if ((millis() - lastSwitch) > 5000) {
if (targetPosition == 0) {
targetPosition = 3000;
} else {
targetPosition = 0;
if (millis() < prevControl) {
// millis timer rolled over, so reset sample and control timers:
prevSample = millis();
prevControl = millis();
currentPosition = encoderToPosition(encoderPosition);
}
lastSwitch = millis();
if (millis() - prevSample >= SAMPLE_RATE) {
// this happens faster than control loop so that TBD smoothing function can be added
prevPosition = currentPosition;
currentPosition = encoderToPosition(encoderPosition); // get wall position (revolutions) from encoder reading
currentVelocity = 60000.0f * (currentPosition - prevPosition) / (float)(millis() - prevSample); // wall speed (rpm)
prevSample = millis();
}
// Calculate how long no data bucket was received
// if (DMXSerial.noDataSince() < 5000) {
digitalWrite(R_EN_PIN, 1);
digitalWrite(L_EN_PIN, 1);
// read recent DMX values and set pwm levels
// pidGain = 0.0001 + (0.002 * (DMXSerial.read(DMX_CHANNEL + 1) / 255));
// float kP = 10 * (DMXSerial.read(DMX_CHANNEL + 2) / 255);
// float kI = 10 * (DMXSerial.read(DMX_CHANNEL + 3) / 255);
// float kD = 10 * (DMXSerial.read(DMX_CHANNEL + 4) / 255);
// pid.SetTunings(kP, kI, kD);
if (millis() - prevControl >= LOOP_RATE) {
// targetMotorVelocity = currentVelocity * MOTOR_RATIO; // begin with assumption we are going the right speed
double remainingDistance = targetPosition - currentPosition;
// double remainingTime; // projected running time assuming velocity doesn't change
// targetPosition = (DMXSerial.read(DMX_CHANNEL) - 100) * 6; // 0-200. 100 is center, <100 is CW, >100 is CCW. 0 & 200 are 360 degrees
// if (currentVelocity == 0) {
// remainingTime = 1e6;
// } else {
// remainingTime = remainingDistance / currentVelocity;
// }
// if (abs(remainingDistance) < WALL_POSITION_TOLERANCE) {
// // we are close enough, stop moving:
// if (abs(targetMotorVelocity) < MAX_MOTOR_ACCELERATION * (float)LOOP_RATE/1000.0f) {
// // we aren't going very fast so just command zero:
// targetMotorVelocity = 0;
// } else {
// // correct by max allowable rate:
// targetMotorVelocity =- (abs(targetMotorVelocity) / targetMotorVelocity) * MAX_MOTOR_ACCELERATION * (float)LOOP_RATE/1000.0f;
// }
// } else if (remainingTime < 0) {
// // moving in the wrong direction, so course correct:
// if (remainingDistance > 0) {
// // need to go CCW, so target velocity is more positive than current velocity
// // but if we are close enough, don't over accelerate; just calculate target speed
// targetMotorVelocity = min(targetMotorVelocity + MAX_MOTOR_ACCELERATION * (float)LOOP_RATE/1000.0f, (0.5 * remainingDistance / ((float)LOOP_RATE/1000.0f)) * MOTOR_RATIO);
// } else {
// // need to go CW, so target velocity is more negative than current velocity
// targetMotorVelocity = max(targetMotorVelocity - MAX_MOTOR_ACCELERATION * (float)LOOP_RATE/1000.0f, (0.5 * remainingDistance / ((float)LOOP_RATE/1000.0f)) * MOTOR_RATIO);
// }
// } else {
// // moving in the correct direction, so check if we should start slowing down:
// stopTime = abs(currentVelocity) / MAX_WALL_ACCELERATION;
// if (stopTime > (remainingTime - 2*(float)LOOP_RATE/1000.0f)) {
// // we need to be slowing down within the next two control loops, so start now:
// if (remainingDistance > 0) {
// // going CCW, so target should adjust in CW direction
// targetMotorVelocity = targetMotorVelocity - MAX_MOTOR_ACCELERATION * (float)LOOP_RATE/1000.0f;
// if (targetMotorVelocity < 0) {
// targetMotorVelocity = 0;
// }
// } else {
// // going CW, so target should adjust in CCW direction
// targetMotorVelocity = targetMotorVelocity + MAX_MOTOR_ACCELERATION * (float)LOOP_RATE/1000.0f;
// if (targetMotorVelocity > 0) {
// targetMotorVelocity = 0;
// }
// }
// } else {
// // we still have a ways to go, so we can accelerate:
// if (remainingDistance > 0) {
// // going CCW, so target should adjust more CCW until MAX
// targetMotorVelocity = min(MOTOR_MAX_RPM, targetMotorVelocity + MAX_MOTOR_ACCELERATION * LOOP_RATE/1000.0f);
// } else {
// // going CW, so target should adjust more CW until -MAX
// targetMotorVelocity = max(-MOTOR_MAX_RPM, targetMotorVelocity - MAX_MOTOR_ACCELERATION * LOOP_RATE/1000.0f);
// }
// }
// }
// int motorPWM = Velocity_to_PWM(targetMotorVelocity);
// targetMotorVelocity += min((remainingDistance * 0.5) - targetMotorVelocity, MAX_MOTOR_ACCELERATION / LOOP_RATE / 1000.0f);
// if (abs(remainingDistance) > WALL_POSITION_TOLERANCE) {
// if (((remainingDistance / 0.16 * 330) - targetMotorVelocity) > 0) {
// targetMotorVelocity = currentVelocity + min((remainingDistance / 0.16 * 330) - currentVelocity, MAX_MOTOR_ACCELERATION * (LOOP_RATE / 1000.0f));
// } else {
// targetMotorVelocity = currentVelocity + max((remainingDistance / 0.16 * 330) - currentVelocity, - MAX_MOTOR_ACCELERATION * (LOOP_RATE / 1000.0f));
// }
// if (targetMotorVelocity > MOTOR_MAX_RPM) {
// targetMotorVelocity = MOTOR_MAX_RPM;
// }
// if (targetMotorVelocity < - MOTOR_MAX_RPM) {
// targetMotorVelocity = - MOTOR_MAX_RPM;
// }
// } else if (currentVelocity < 1){
// targetMotorVelocity = 0;
// }
pid.Compute();
// motorPWM += (pidPWM - motorPWM) * pidGain;
motorPWM = pidPWM;
Serial.print("current: ");
int motorPWM = Velocity_to_PWM(targetMotorVelocity);
if (targetMotorVelocity == 0) {
digitalWrite(RPWM_PIN, LOW);
digitalWrite(RLED_PIN, LOW);
digitalWrite(LPWM_PIN, LOW);
digitalWrite(LLED_PIN, LOW);
} else if (targetMotorVelocity > 0) {
digitalWrite(RPWM_PIN, LOW);
digitalWrite(RLED_PIN, LOW);
pwmWrite(LPWM_PIN, motorPWM);
pwmWrite(LLED_PIN, motorPWM);
} else {
digitalWrite(LPWM_PIN, LOW);
digitalWrite(LLED_PIN, LOW);
pwmWrite(RPWM_PIN, motorPWM);
pwmWrite(RLED_PIN, motorPWM);
}
prevControl = millis();
Serial.print(">ePos: ");
Serial.print(encoderPosition);
Serial.print(", wPos: ");
Serial.print(currentPosition);
Serial.print(", target: ");
Serial.print(targetPosition);
Serial.print(", PID: ");
Serial.print(pidPWM);
Serial.print(", Motor: ");
Serial.print(", wVel: ");
Serial.print(currentVelocity);
Serial.print(", rDist: ");
Serial.print(remainingDistance);
Serial.print(", rTime: ");
Serial.print(remainingTime);
Serial.print(", sTime:");
Serial.print(stopTime);
Serial.print(", tVel: ");
Serial.print(targetMotorVelocity);
Serial.print(", mPWM: ");
Serial.println(motorPWM);
if (motorPWM > 0) {
pwmWrite(RPWM_PIN, 0);
pwmWrite(LPWM_PIN, motorPWM);
}
analogWrite(5, 0);
analogWrite(6, motorPWM);
recvWithEndMarker();
showNewData();
// delay(5);
// make sure DMX is still alive:
// // } else {
// // digitalWrite(R_EN_PIN, 0);
// // digitalWrite(L_EN_PIN, 0);
// // }
}
void updateEncoder() {
if (digitalRead(ENCODER_B) == LOW) {
encoderPosition--; // CCW
} else {
pwmWrite(LPWM_PIN, 0);
pwmWrite(RPWM_PIN, -motorPWM);
analogWrite(6, 0);
analogWrite(5, -motorPWM);
encoderPosition++; // CW
}
}
// } else {
// digitalWrite(R_EN_PIN, 0);
// digitalWrite(L_EN_PIN, 0);
// }
double encoderToPosition(long encoderPosition) {
return (encoderPosition / (float)ENCODER_PPR) / (float)ENCODER_RATIO;
}
int Velocity_to_PWM(double motorVelocity) {
if (abs(motorVelocity) > 0) {
return min(round(MOTOR_MIN_PWM + ((255 - MOTOR_MIN_PWM) / (float)MOTOR_MAX_RPM) * abs(motorVelocity)), 255);
}
return 0;
}
void recvWithEndMarker() {
static byte ndx = 0;
char endMarker = '\n';
char rc;
while (Serial.available() > 0 && newData == false) {
rc = Serial.read();
if (rc != endMarker) {
receivedChars[ndx] = rc;
ndx++;
if (ndx >= numChars) {
ndx = numChars - 1;
}
}
else {
receivedChars[ndx] = '\0'; // terminate the string
ndx = 0;
newData = true;
}
}
}
void showNewData() {
if (newData == true) {
Serial.print("This just in ... ");
Serial.println(receivedChars);
newData = false;
}
}