wires/Core/Src/main.c
2024-10-12 12:44:33 -05:00

620 lines
16 KiB
C

/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* Copyright (c) 2024 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include <stdbool.h>
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
uint8_t i2c_register;
#define I2C_REGISTER_DELTA 1
#define I2C_REGISTER_WIRES 2
#define I2C_REGISTER_BUTTON 3
#define I2C_REGISTER_RELAY_BUZZ 4
#define I2C_REGISTER_LED 5
#define I2C_REGISTER_ISSUE_STRIKE 6
#define I2C_REGISTER_STRIKE_BUZZ_LEN 7
#define I2C_REGISTER_STRIKE_RELAY_LEN 8
#define BUZZ_BIT_IDX 0
#define RELAY_BIT_IDX 1
#define DELTA_BIT_WIRES 0
#define DELTA_BIT_BUTTON 1
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
I2C_HandleTypeDef hi2c1;
UART_HandleTypeDef huart2;
/* USER CODE BEGIN PV */
uint8_t old_delta;
uint8_t delta;
uint8_t old_wires;
uint8_t wires;
uint8_t old_button;
uint8_t button;
uint8_t old_relay_buzz;
uint8_t relay_buzz;
uint8_t old_leds = 0;
uint8_t leds = 0;
uint16_t strike_buzz_len = 500;
uint16_t strike_relay_len = 1000;
bool strike_issued;
uint32_t strike_at;
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_I2C1_Init(void);
static void MX_USART2_UART_Init(void);
/* USER CODE BEGIN PFP */
#ifdef __GNUC__
/* With GCC/RAISONANCE, small printf (option LD Linker->Libraries->Small printf
set to 'Yes') calls __io_putchar() */
#define PUTCHAR_PROTOTYPE int __io_putchar(int ch)
#else
#define PUTCHAR_PROTOTYPE int fputc(int ch, FILE *f)
#endif /* __GNUC__ */
void send_interupt(void);
void send_register(void);
void recv_register(void);
void init_interupt(void);
void init_leds(void);
void init_relay_buzz(void);
void scan_wires(void);
void scan_button(void);
void set_relay_buzz(void);
void set_leds(void);
void handle_strike(void);
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_I2C1_Init();
MX_USART2_UART_Init();
/* USER CODE BEGIN 2 */
HAL_I2C_EnableListen_IT(&hi2c1);
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
scan_wires();
scan_button();
handle_strike();
set_relay_buzz();
set_leds();
send_interupt();
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Configure the main internal regulator output voltage
*/
HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1);
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSIDiv = RCC_HSI_DIV1;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief I2C1 Initialization Function
* @param None
* @retval None
*/
static void MX_I2C1_Init(void)
{
/* USER CODE BEGIN I2C1_Init 0 */
/* USER CODE END I2C1_Init 0 */
/* USER CODE BEGIN I2C1_Init 1 */
/* USER CODE END I2C1_Init 1 */
hi2c1.Instance = I2C1;
hi2c1.Init.Timing = 0x00303D5B;
hi2c1.Init.OwnAddress1 = 250;
hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
hi2c1.Init.OwnAddress2 = 0;
hi2c1.Init.OwnAddress2Masks = I2C_OA2_NOMASK;
hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
if (HAL_I2C_Init(&hi2c1) != HAL_OK)
{
Error_Handler();
}
/** Configure Analogue filter
*/
if (HAL_I2CEx_ConfigAnalogFilter(&hi2c1, I2C_ANALOGFILTER_ENABLE) != HAL_OK)
{
Error_Handler();
}
/** Configure Digital filter
*/
if (HAL_I2CEx_ConfigDigitalFilter(&hi2c1, 0) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN I2C1_Init 2 */
/* USER CODE END I2C1_Init 2 */
}
/**
* @brief USART2 Initialization Function
* @param None
* @retval None
*/
static void MX_USART2_UART_Init(void)
{
/* USER CODE BEGIN USART2_Init 0 */
/* USER CODE END USART2_Init 0 */
/* USER CODE BEGIN USART2_Init 1 */
/* USER CODE END USART2_Init 1 */
huart2.Instance = USART2;
huart2.Init.BaudRate = 115200;
huart2.Init.WordLength = UART_WORDLENGTH_8B;
huart2.Init.StopBits = UART_STOPBITS_1;
huart2.Init.Parity = UART_PARITY_NONE;
huart2.Init.Mode = UART_MODE_TX_RX;
huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart2.Init.OverSampling = UART_OVERSAMPLING_16;
huart2.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
huart2.Init.ClockPrescaler = UART_PRESCALER_DIV1;
huart2.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
if (HAL_UART_Init(&huart2) != HAL_OK)
{
Error_Handler();
}
if (HAL_UARTEx_SetTxFifoThreshold(&huart2, UART_TXFIFO_THRESHOLD_1_8) != HAL_OK)
{
Error_Handler();
}
if (HAL_UARTEx_SetRxFifoThreshold(&huart2, UART_RXFIFO_THRESHOLD_1_8) != HAL_OK)
{
Error_Handler();
}
if (HAL_UARTEx_DisableFifoMode(&huart2) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN USART2_Init 2 */
/* USER CODE END USART2_Init 2 */
}
/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* USER CODE BEGIN MX_GPIO_Init_1 */
/* USER CODE END MX_GPIO_Init_1 */
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOF_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(LED2_GPIO_Port, LED2_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOA, LED3_Pin|HELP_BTN_Pin|INT_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOB, RELAY1_Pin|RELAY2_Pin|BUZZ_Pin|LED4_Pin
|LED1_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin : LED2_Pin */
GPIO_InitStruct.Pin = LED2_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(LED2_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pins : LED3_Pin HELP_BTN_Pin INT_Pin */
GPIO_InitStruct.Pin = LED3_Pin|HELP_BTN_Pin|INT_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/*Configure GPIO pins : WIRE8_Pin WIRE7_Pin WIRE6_Pin WIRE5_Pin */
GPIO_InitStruct.Pin = WIRE8_Pin|WIRE7_Pin|WIRE6_Pin|WIRE5_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_PULLUP;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/*Configure GPIO pins : WIRE4_Pin WIRE3_Pin WIRE2_Pin WIRE1_Pin */
GPIO_InitStruct.Pin = WIRE4_Pin|WIRE3_Pin|WIRE2_Pin|WIRE1_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_PULLUP;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/*Configure GPIO pins : RELAY1_Pin RELAY2_Pin BUZZ_Pin LED4_Pin
LED1_Pin */
GPIO_InitStruct.Pin = RELAY1_Pin|RELAY2_Pin|BUZZ_Pin|LED4_Pin
|LED1_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/* USER CODE BEGIN MX_GPIO_Init_2 */
/* USER CODE END MX_GPIO_Init_2 */
}
/* USER CODE BEGIN 4 */
PUTCHAR_PROTOTYPE
{
/* Place your implementation of fputc here */
/* e.g. write a character to the USART1 and Loop until the end of transmission */
HAL_UART_Transmit(&huart2, (uint8_t *)&ch, 1, 0xFFFF);
return ch;
}
bool has_received_data;
void HAL_I2C_ListenCpltCallback(I2C_HandleTypeDef *hi2c)
{
i2c_register = 0;
has_received_data = false;
HAL_I2C_EnableListen_IT(hi2c);
}
void HAL_I2C_AddrCallback(I2C_HandleTypeDef *hi2c, uint8_t TransferDirection, uint16_t AddrMatchCode) {
if (TransferDirection == I2C_DIRECTION_TRANSMIT) {
HAL_I2C_Slave_Seq_Receive_IT(hi2c, &i2c_register, 1, I2C_NEXT_FRAME);
} else {
send_register();
}
}
uint8_t send_data[2];
void send_register(void) {
switch (i2c_register) {
case I2C_REGISTER_DELTA:
HAL_I2C_Slave_Seq_Transmit_IT(&hi2c1, &delta, 1, I2C_NEXT_FRAME);
break;
case I2C_REGISTER_WIRES:
HAL_I2C_Slave_Seq_Transmit_IT(&hi2c1, &wires, 1, I2C_NEXT_FRAME);
delta &= ~(1 << DELTA_BIT_WIRES);
break;
case I2C_REGISTER_BUTTON:
HAL_I2C_Slave_Seq_Transmit_IT(&hi2c1, &button, 1, I2C_NEXT_FRAME);
delta &= ~(1 << DELTA_BIT_BUTTON);
break;
case I2C_REGISTER_RELAY_BUZZ:
HAL_I2C_Slave_Seq_Transmit_IT(&hi2c1, &relay_buzz, 1, I2C_NEXT_FRAME);
break;
case I2C_REGISTER_LED:
HAL_I2C_Slave_Seq_Transmit_IT(&hi2c1, &leds, 1, I2C_NEXT_FRAME);
break;
case I2C_REGISTER_STRIKE_BUZZ_LEN:
send_data[0] = strike_buzz_len & 0xFF;
send_data[1] = strike_buzz_len >> 8;
HAL_I2C_Slave_Seq_Transmit_IT(&hi2c1, send_data, 2, I2C_NEXT_FRAME);
break;
case I2C_REGISTER_STRIKE_RELAY_LEN:
send_data[0] = strike_relay_len & 0xFF;
send_data[1] = strike_relay_len >> 8;
HAL_I2C_Slave_Seq_Transmit_IT(&hi2c1, send_data, 2, I2C_NEXT_FRAME);
break;
default:
break;
}
}
uint8_t recv_data[2];
void recv_register(void) {
switch (i2c_register) {
case I2C_REGISTER_RELAY_BUZZ:
HAL_I2C_Slave_Seq_Receive_IT(&hi2c1, &relay_buzz, 1, I2C_NEXT_FRAME);
break;
case I2C_REGISTER_LED:
HAL_I2C_Slave_Seq_Receive_IT(&hi2c1, &leds, 1, I2C_NEXT_FRAME);
break;
case I2C_REGISTER_STRIKE_BUZZ_LEN:
HAL_I2C_Slave_Seq_Receive_IT(&hi2c1, recv_data, 2, I2C_NEXT_FRAME);
break;
case I2C_REGISTER_STRIKE_RELAY_LEN:
HAL_I2C_Slave_Seq_Receive_IT(&hi2c1, recv_data, 2, I2C_NEXT_FRAME);
break;
default:
break;
}
has_received_data = true;
}
void HAL_I2C_SlaveRxCpltCallback(I2C_HandleTypeDef *hi2c)
{
if (i2c_register == I2C_REGISTER_ISSUE_STRIKE) {
strike_issued = true;
}
if (has_received_data) {
has_received_data = false;
// reconstruct anything that needs to be reconstructed
switch (i2c_register) {
case I2C_REGISTER_STRIKE_BUZZ_LEN:
strike_buzz_len = recv_data[0];
strike_buzz_len |= ((uint16_t) recv_data[1]) << 8;
break;
case I2C_REGISTER_STRIKE_RELAY_LEN:
strike_relay_len = recv_data[0];
strike_relay_len |= ((uint16_t) recv_data[1]) << 8;
break;
default:
break;
}
} else {
recv_register();
}
}
void HAL_I2C_SlaveTxCpltCallback(I2C_HandleTypeDef *hi2c)
{
}
void scan_wires(void)
{
old_wires = wires;
uint8_t new_wires = 0;
new_wires |= (HAL_GPIO_ReadPin(WIRE1_GPIO_Port, WIRE1_Pin) == GPIO_PIN_RESET) << 0;
new_wires |= (HAL_GPIO_ReadPin(WIRE2_GPIO_Port, WIRE2_Pin) == GPIO_PIN_RESET) << 1;
new_wires |= (HAL_GPIO_ReadPin(WIRE3_GPIO_Port, WIRE3_Pin) == GPIO_PIN_RESET) << 2;
new_wires |= (HAL_GPIO_ReadPin(WIRE4_GPIO_Port, WIRE4_Pin) == GPIO_PIN_RESET) << 3;
new_wires |= (HAL_GPIO_ReadPin(WIRE5_GPIO_Port, WIRE5_Pin) == GPIO_PIN_RESET) << 4;
new_wires |= (HAL_GPIO_ReadPin(WIRE6_GPIO_Port, WIRE6_Pin) == GPIO_PIN_RESET) << 5;
new_wires |= (HAL_GPIO_ReadPin(WIRE7_GPIO_Port, WIRE7_Pin) == GPIO_PIN_RESET) << 6;
new_wires |= (HAL_GPIO_ReadPin(WIRE8_GPIO_Port, WIRE8_Pin) == GPIO_PIN_RESET) << 7;
wires = new_wires;
if (wires != old_wires) {
delta |= 1 << DELTA_BIT_WIRES;
}
}
void scan_button(void)
{
old_button = button;
button = HAL_GPIO_ReadPin(HELP_BTN_GPIO_Port, HELP_BTN_Pin) == GPIO_PIN_RESET;
if (button != old_button) {
delta |= 1 << DELTA_BIT_BUTTON;
}
}
void set_relay_buzz(void)
{
if (relay_buzz != old_relay_buzz) {
old_relay_buzz = relay_buzz;
HAL_GPIO_WritePin(BUZZ_GPIO_Port, BUZZ_Pin, (relay_buzz >> BUZZ_BIT_IDX) & 1);
HAL_GPIO_WritePin(RELAY1_GPIO_Port, RELAY1_Pin, (relay_buzz >> RELAY_BIT_IDX) & 1);
HAL_GPIO_WritePin(RELAY2_GPIO_Port, RELAY2_Pin, (relay_buzz >> RELAY_BIT_IDX) & 1);
}
}
void set_leds(void)
{
if (leds != old_leds) {
old_leds = leds;
HAL_GPIO_WritePin(LED1_GPIO_Port, LED1_Pin, (leds >> 0) & 1);
HAL_GPIO_WritePin(LED2_GPIO_Port, LED2_Pin, (leds >> 1) & 1);
HAL_GPIO_WritePin(LED3_GPIO_Port, LED3_Pin, (leds >> 2) & 1);
HAL_GPIO_WritePin(LED4_GPIO_Port, LED4_Pin, (leds >> 3) & 1);
}
}
void send_interupt(void)
{
if (delta != old_delta) {
old_delta = delta;
HAL_GPIO_WritePin(INT_GPIO_Port, INT_Pin, delta == 0);
}
}
uint32_t old_tick;
void handle_strike(void) {
if (strike_issued && (strike_at == 0)) {
strike_issued = false;
strike_at = HAL_GetTick();
// start the buzzer and set the led
relay_buzz |= 1 << BUZZ_BIT_IDX;
leds |= 1 << 3;
}
if (strike_at == 0) {
return;
}
uint32_t now = HAL_GetTick();
uint32_t buzz_threshold = strike_at + strike_buzz_len;
if (now > buzz_threshold && old_tick <= buzz_threshold) {
// stop buzzing, start the relay
relay_buzz = (1 << RELAY_BIT_IDX);
}
uint32_t relay_threshold = buzz_threshold + strike_relay_len;
if (now > relay_threshold) {
// stop the strike
strike_at = 0;
relay_buzz = 0;
leds &= ~(1 << 3);
}
old_tick = now;
}
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */